首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   4篇
工业技术   9篇
  2004年   3篇
  2003年   5篇
  2000年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
描述了一种串联微波MEMS开关的设计、制造过程,它制作在玻璃衬底上,采用金铂触点,在DC~5GHz,插损小0.6dB,隔离度大于30dB,开关时间小于30μs.对这种微波开关的温度特性和功率处理能力进行了测试,在DC~4GHz,85℃下的插损增加了0.2dB,-55℃下的插损增加了0.4dB,而隔离度基本保持不变.在开关中流过的连续波功率从10dBm上升到35.1dBm,开关的插损下降了0.1~0.6dB,并且在35.1dBm(3.24W)下开关还能工作.和所报道的并联开关最大处理功率(420mW)相比,该结果说明串联开关具有较大的功率处理能力.  相似文献   
2.
MEMSE类放大器   总被引:1,自引:1,他引:0  
对采用 MEMS开关的 E类放大器进行了原型仿真 ,并且通过工艺流片制作 MEMS开关 ,搭建 E类放大器电路进行测试 .测试结果显示 ,这种机械式的放大器同样能实现有源放大器的功能 .测试得到的放大器实际效率与原型模拟结果一致 ,而放大器的功率增益高达 2 0 0 0 .  相似文献   
3.
对采用MEMS开关的E类放大器进行了原型仿真,并且通过工艺流片制作MEMS开关,搭建E类放大器电路进行测试.测试结果显示,这种机械式的放大器同样能实现有源放大器的功能.测试得到的放大器实际效率与原型模拟结果一致,而放大器的功率增益高达2000.  相似文献   
4.
提出了一种串联MEMS开关的电磁耦合模型,并且应用该模型,对采用表面硅工艺和体硅工艺制作的MEMS开关,采用全波分析方法,进行了瞬态电磁场分析。由于开关尺寸为微米量级,而驱动电压高达40~60V,这样的瞬态高压有可能对开关上的信号产生影响。理论仿真结果显示,开关驱动路对信号路有很强的耦合场存在。实验结果同样显示,耦舍到信号路的信号可以输入信号产生最大值为60%的失真。  相似文献   
5.
提出了一种串联MEMS开关的电磁耦合模型,并且应用该模型,对采用表面硅工艺和体硅工艺制作的MEMS开关,采用全波分析方法,进行了瞬态电磁场分析.由于开关尺寸为微米量级,而驱动电压高达40~60V,这样的瞬态高压有可能对开关上的信号产生影响.理论仿真结果显示,开关驱动路对信号路有很强的耦合场存在.实验结果同样显示,耦合到信号路的信号可以输入信号产生最大值为60%的失真.  相似文献   
6.
描述了一种串联微波 MEMS开关的设计、制造过程 ,它制作在玻璃衬底上 ,采用金铂触点 ,在 DC~ 5 GHz,插损小于 0 .6 d B,隔离度大于 30 d B,开关时间小于 30μs.对这种微波开关的温度特性和功率处理能力进行了测试 ,在DC~ 4 GHz,85℃下的插损增加了 0 .2 d B,- 5 5℃下的插损增加了 0 .4 d B,而隔离度基本保持不变 .在开关中流过的连续波功率从 1 0 d Bm上升到 35 .1 d Bm ,开关的插损下降了 0 .1~ 0 .6 d B,并且在 35 .1 d Bm (3.2 4 W)下开关还能工作 .和所报道的并联开关最大处理功率 (4 2 0 m W)相比 ,该结果说明串联开关具有较大的功率处理能力  相似文献   
7.
提出了采用陷波电路结构来补偿串联RFMEMS开关断开时的耦合电容,提高其隔离度的一种方法。理论分析显示,采用这种方法,在2~5GHz的频率范围内,可以使开关的隔离度最多提高15郾6dB,而插入损耗只受到0郾07dB的影响。  相似文献   
8.
介绍了微波微电子机械开关(MEMS开关)的形式、物理特性,分析了其工作原理.文中采用一端固定、一端自由运动的悬臂梁的力学模型,给出了MEMS开关设计的经验公式.最后,对微电子机械开关在MMIC中的发展前景作出了预测.  相似文献   
9.
提出了一种串联MEMS开关的电磁耦合模型 ,并且应用该模型 ,对采用表面硅工艺和体硅工艺制作的MEMS开关 ,采用全波分析方法 ,进行了瞬态电磁场分析。由于开关尺寸为微米量级 ,而驱动电压高达 4 0~ 6 0V ,这样的瞬态高压有可能对开关上的信号产生影响。理论仿真结果显示 ,开关驱动路对信号路有很强的耦合场存在。实验结果同样显示 ,耦合到信号路的信号可以输入信号产生最大值为 6 0 %的失真  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号