首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
采用甚高频等离子体增强化学气相沉积技术,在相对较高气压和较高功率条件下,制备了不同硅烷浓度的微晶硅材料.材料沉积速率随硅烷浓度的增加而增大,通过对材料的电学特性和结构特性的分析得知:获得了沉积速率超过1 nm/s高速率器件质量级微晶硅薄膜,并且也初步获得了效率达6.3%的高沉积速率微晶硅太阳电池.  相似文献   

2.
对甚高频等离子体增强化学气相沉积技术制备的微晶硅薄膜太阳电池进行了研究.喇曼测试结果显示:微晶硅薄膜太阳电池在p/i界面存在着一定的非晶孵化层.孵化层的厚度随硅烷浓度的增加或辉光功率的降低而增大.可以通过适当的硅烷浓度或适当的辉光功率来降低孵化层的厚度.  相似文献   

3.
采用等离子体化学气相沉积(PECVD)方法制备了硼掺杂微晶硅薄膜和微晶硅薄膜太阳电池.研究了乙硼烷含量、p型膜厚度及沉积温度对硼掺杂薄膜生长特性和高沉积速率的电池性能的影响.通过对p型微晶硅薄膜沉积参数的优化,在本征层沉积速率为0.78nm/s的高沉积速率下,制备了效率为5.5%的单结微晶硅薄膜太阳电池.另外,对P型微晶硅薄膜的载流子疏输运机理进行了讨论.  相似文献   

4.
采用等离子体化学气相沉积(PECVD)方法制备了硼掺杂微晶硅薄膜和微晶硅薄膜太阳电池.研究了乙硼烷含量、p型膜厚度及沉积温度对硼掺杂薄膜生长特性和高沉积速率的电池性能的影响.通过对p型微晶硅薄膜沉积参数的优化,在本征层沉积速率为0.78nm/s的高沉积速率下,制备了效率为5.5%的单结微晶硅薄膜太阳电池.另外,对p型微晶硅薄膜的载流子疏输运机理进行了讨论.  相似文献   

5.
在掺杂P室采用甚高频等离子体增强化学气相沉积(VHF-PECVD)技术,制备了不同硅烷浓度条件下的本征微晶硅薄膜.对薄膜电学特性和结构特性的测试结果分析表明:随硅烷浓度的增加,材料的光敏性先略微降低后提高,而晶化率的变化趋势与之相反;X射线衍射(XRD)测试表明材料具有(220)择优晶向.在P腔室中用VHF-PECVD方法制备单结微晶硅太阳能电池的i层和p层,其光电转换效率为4.7%,非晶硅/微晶硅叠层电池(底电池的p层和i层在P室沉积)的效率达8.5%.  相似文献   

6.
利用甚高频等离子体增强化学气相沉积技术沉积微晶硅材料.随硅烷浓度的降低,材料晶化率增加,材料的光学带隙在1.5~1.65eV之间,材料的电导率先增加后减小.采用光发射谱测量技术对辉光进行在线测量,研究沉积条件对VHF等离子体和微晶硅材料特性的影响.实验表明,等离子中的SiH 和H α对微晶硅材料特性有重要的影响,硅烷浓度为2%~4%时,等离子体中H α/SiH 的比值处于0.6~0.9,可以得到晶化率在40%~55%的微晶硅材料.  相似文献   

7.
硅烷浓度对本征微晶硅材料的影响   总被引:6,自引:2,他引:4  
朱锋  张晓丹  赵颖  魏长春  孙建  耿新华 《半导体学报》2004,25(12):1624-1627
利用甚高频等离子体增强化学气相沉积技术沉积微晶硅材料.随硅烷浓度的降低,材料晶化率增加,材料的光学带隙在1.5~1.65eV之间,材料的电导率先增加后减小.采用光发射谱测量技术对辉光进行在线测量,研究沉积条件对VHF等离子体和微晶硅材料特性的影响.实验表明,等离子中的SiH*和H*α对微晶硅材料特性有重要的影响,硅烷浓度为2%~4%时,等离子体中H*α/SiH*的比值处于0.6~0.9,可以得到晶化率在40%~55%的微晶硅材料.  相似文献   

8.
在掺杂P室采用甚高频等离子体增强化学气相沉积(VHF—PECVD)技术,制备了不同硅烷浓度条件下的本征微晶硅薄膜.对薄膜电学特性和结构特性的测试结果分析表明:随硅烷浓度的增加,材料的光敏性先略微降低后提高,而晶化率的变化趋势与之相反;X射线衍射(xRD)测试表明材料具有(220)择优晶向.在P腔室中用VHF—PECVD方法制备单结微晶硅太阳能电池的i层和p层,其光电转换效率为4.7%,非晶硅/微晶硅叠层电池(底电池的p层和i层在P室沉积)的效率达8.5%.  相似文献   

9.
对底栅微晶硅TFT的微晶硅材料生长孵化层问题进行了详细讨论,发现低硅烷浓度是减薄该层厚度的有效途径.同时又发现,以SiNx为栅绝缘层的底栅TFT,对随后生长的硅基薄膜有促进晶化的作用(约20%).沉积底栅TFT的微晶硅有源层时,必须计入该影响.因此为了获得良好的I-V特性,选用的硅烷浓度不宜低于3%.由硅基薄膜晶化体积比与系列沉积工艺条件关系和TFT所得薄膜晶化体积比的对比,可清晰证实SiNx对晶化的促进作用.  相似文献   

10.
对甚高频等离子体增强化学气相沉积技术制备的微晶硅薄膜太阳电池进行了研究.喇曼测试结果显示:微晶硅薄膜太阳电池在p/i界面存在着一定的非晶孵化层.孵化层的厚度随硅烷浓度的增加或辉光功率的降低而增大.可以通过适当的硅烷浓度或适当的辉光功率来降低孵化层的厚度.  相似文献   

11.
We study the high‐rate deposition of microcrystalline silicon in a large‐area plasma‐enhanced chemical‐vapor‐deposition (PECVD) reactor operated at 40.68 MHz, in the little‐explored process conditions of high‐pressure and high‐silane concentration and depletion. Due to the long gas residence time in this process, the silane gas is efficiently depleted using moderate feed‐in power density, thus facilitating up‐scaling of the process to large surfaces. As observed in more traditional deposition processes, the deposition rate and performance of device‐quality material are limited by the inter‐electrode gap of the reactor. We significantly increase the cell performances by reducing this gap. X‐ray diffractometry (XRD) and secondary ion mass spectroscopy (SIMS) are used to characterize the microcrystalline material deposited in the modified reactor at a rate of 1 nm/s. Comparison with a microcrystalline process at a low deposition rate demonstrates that the crystallographic orientation of the absorbing layer of the cell and the concentrations of contaminants are strongly correlated and dependent on the process. We use microcrystalline cells with absorber layer grown at a rate of 1 nm/s integrated as bottom cells in amorphous‐microcrystalline (micromorph) tandem solar cells using the superstrate configuration. We report an initial efficiency of 10.8% (9.6% stabilized) for a tandem cell with 1.2 cm2 surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
高压高功率VHF-PECVD的微晶硅薄膜高速沉积   总被引:2,自引:2,他引:0  
采用高压高功率(hphP)甚高频等离子体强强化学气相沉积(VHF-PECVD)法对微晶硅(μc-Si:H)进行高速沉积,在最优沉积条件参数下对hphP和低压低功率(lplP)两组样品沉积速率、光电导、暗电导及光敏性等性能参数进行测试,得到了1.58 nm/s的较高沉积速率、光电性能优秀和更适合薄膜太阳能电池的μc-Si...  相似文献   

13.
采用超高频等离子体增强化学气相沉积(VHF-PECVD)技术研究微晶硅(μc-Si)薄膜的高速沉积过程发现:分别采用100和500 sccm流量制备本征μc-Si材料,将其应用在μc-Si电池i层,电池的电流-电压(I-V)特性有明显的差异.通过微区Raman、原子力显微镜(AFM)和X射线衍射(XRD)测试发现:尽管μc-Si薄膜的晶化率相似,但是小流量情况下制备的薄膜具有较厚的非晶孵化层,晶粒尺寸不一;大流量下制备的材料沿生长方向的纵向均匀性相对较好,晶粒尺寸较小、分布均匀,而且具有〈220〉晶相峰强度高于〈111〉和〈311〉晶相峰强度的特点.因此得出:在高压高速沉积μc-Si薄膜过程中,反应气体流量对μc-Si的纵向结构有很大影响,选择适合的反应气流量能够调节适宜的气体滞留时间,从而减小薄膜的纵向不均匀性.  相似文献   

14.
应用高压高功率(hphP)甚高频等离子增强化学气相沉积(VHF-PECVD)法对微晶硅(μc-Si:H)进行高速沉积,确定了hphP VHF-PECVD法沉积μc-Si:H的最优条件参数,在此参数下对hphP和低压低功率(IplP)两组样品沉积速率、光电导、暗电导及光敏性等性能参数进行测试,得到了1.58 nm的较高沉...  相似文献   

15.
高气压耗尽RF-PECVD在高速生长优质微晶硅材料和太阳能电池方面具有巨大的优势.采用这种沉积方法,本征微晶硅材料的生长速度提高到0.32 nm/s,晶化率达58.2%.把这种高速生长的微晶硅材料用作太阳电池的本征吸收层,在没有优化工艺参数和没有采用ZnO增反电极时,电池的转换效率达到4.8%.  相似文献   

16.
低温高速率沉积非晶硅薄膜及太阳电池   总被引:1,自引:0,他引:1  
采用射频等离子体增强化学气相沉积(RF-PECVD)技术,保持沉积温度在125℃制备非晶硅薄膜材料及太阳电池。在85 Pa的低压下以及400~667 Pa的高压下,改变Si H4浓度和辉光功率等沉积参数,对本征a-Si材料的性能进行优化。结果表明,在高压下,合适的Si H4浓度和压力功率比可以使a-Si材料的光电特性得到优化,并且薄膜的沉积速率得到一定程度的提高。采用低压低速和高压高速的沉积条件,在125℃的低温条件下制备出效率为6.7%的单结a-Si电池,高压下本征层a-Si材料的沉积速率由0.06~0.08 nm/s提高到0.17~0.19 nm/s。  相似文献   

17.
VHF-PECVD制备微晶硅材料及电池   总被引:2,自引:2,他引:0  
采用VHF-PECVD技术制备了不同功率系列的微晶硅薄膜和电池,测试结果表明:制备的适用于微晶硅电池的有源层材料的暗电导和光敏性都在电池要求的参数范围内.低功率或高功率条件下,电池从n和p方向的喇曼测试结果是不同的,在晶化率方面材料和电池也有很大的差别,把相应的材料应用于电池上时,这一点很重要.采用VHFPECVD技术制备的微晶硅电池效率为5%,Voc=0.45V,Jsc=22mA/cm2,FF=50%,Area=0.253cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号