首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   64篇
  国内免费   15篇
工业技术   1053篇
  2024年   4篇
  2023年   24篇
  2022年   36篇
  2021年   65篇
  2020年   57篇
  2019年   64篇
  2018年   75篇
  2017年   59篇
  2016年   49篇
  2015年   40篇
  2014年   48篇
  2013年   93篇
  2012年   64篇
  2011年   65篇
  2010年   51篇
  2009年   35篇
  2008年   26篇
  2007年   27篇
  2006年   8篇
  2005年   9篇
  2004年   9篇
  2003年   7篇
  2002年   13篇
  2001年   9篇
  2000年   5篇
  1999年   2篇
  1998年   7篇
  1997年   5篇
  1996年   6篇
  1995年   10篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   6篇
  1985年   2篇
  1984年   9篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1980年   6篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1975年   6篇
  1974年   2篇
  1972年   2篇
排序方式: 共有1053条查询结果,搜索用时 46 毫秒
1.
Silicon - Feeling prone to stress differs with plant production stage, water scarcity near commencement of grain filling phase has a significant reduced grain yield through fewer endosperm and sink...  相似文献   
2.
Individually, photoredox catalysis (PC) and photodynamic therapy (PDT) are well-established concepts that have experienced a remarkable resurgence in recent years, leading to significant progress in organic synthesis for PC and clinical approval of anticancer drugs for PDT. But, very recently, new photoredox catalyst systems based on Ir(III) and Ru(II) complexes have garnered significant interest because they can simultaneously be used as PDT agents apart from their demonstrated PC activity. This highlight discusses the unique PC behavior of emerging Ir(III)- and Ru(II)-based systems while also examining their potential PDT activity in cancer treatment.  相似文献   
3.
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.  相似文献   
4.
Ahmad  Bilal  Jian  Wang  Enam  Rabia Noor  Abbas  Ali 《Wireless Personal Communications》2021,118(2):1055-1073

As per the most recent literature, Orthogonal Frequency Division Multiplexing (OFDM), a multi access technique, is considered most suitable for the 3G, 4G and 5G techniques in high speed wireless communication. What made OFDM most popular is its ability to deliver high bandwidth efficiency and superior data rate. Besides it, high value of peak to average power ratio (PAPR) and Inter Carrier Interference (ICI) are the challenges to tackle down via appropriate mitigation scheme. As a research contribution in the present work, an improved self-cancellation (SC) technique is designed and simulated through Simulink to mitigate the effect of ICI. This novel proposed technique (Improved SC) is designed over discrete wavelet transform (DWT) based OFDM and compared with conventional SC scheme over different channel conditions i.e. AWGN and Rayleigh fading environments. It is found that proposed DWT-OFDM with Improved SC scheme outperforms conventional SC technique significantly, under both AWGN and Rayleigh channel conditions. Further, in order to justify the novelty in the research contribution, a Split-DWT based Simulink model for Improved SC scheme is investigated to analyse the BER performance. This Split-DWT based Simulink model presented here foretells the future research potential in wavelet hybridization of OFDM to side-line ICI effects more efficiently.

  相似文献   
5.
6.
In the quest on improving composite formulations for environmental sustainability, maleic acid (MA) cross-linked poly(vinyl alcohol) (PVA)-α-chitin composites reinforced by oil palm empty fruit bunch fibers (OPEFB)-derived nanocellulose crystals (NCC) had been successfully prepared. Based on the Fourier transform infrared (FTIR) spectroscopic analysis, it was proven that molecular interactions of the cross-linker to the polymeric networks was through conjugated ester linkage. Differential scanning calorimetry (DSC) showed that the influence of MA was minimal toward crystallization in the PVA/chitin/NCC composite. Maximum tensile strength, elongation at break and Young's modulus of the respective PVA/chitin/NCC composites were achieved at different content of MA, dependent on the PVA/chitin mass ratio. Among all compositions, a maximum Young's modulus was achieved at 30 wt% MA loading in PVA/chitin-30/NCC, amounting to 2,413.81 ± 167.36 MPa. Moreover, the mechanical properties and selected physicochemical properties (swelling, gel content, and contact angle) of the PVA/chitin/NCC composites could be tailored by varying the chitin content (10–30 wt%) and MA content (10–50 wt% based on total mass of composite). In brief, this chemically cross-linked PVA-based biocomposites formulated with sustainable resources exhibited tunable physicochemical and mechanical properties.  相似文献   
7.
The technology for transesterification reactions between methyl esters and alcohols is well established by using classical homogeneous alkaline catalysts, which provide high conversion of methyl esters to specialty or nonindigenous esters. However, in certain products where the purity of the esters is of concern, the removal of homogeneous catalysts after the completion of the reaction is a challenge in terms of production cost and water footprint. Therefore, a study to investigate the potential of heterogeneous catalysts was conducted on reactions between methyl palmitate and triethanolamine. The degree of basicity and active surface area of calcium oxide (CaO), zinc oxide (ZnO), and magnesium oxide (MgO) were first characterized by using temperature-programmed desorption (TPD-CO2) and Brunauere–Emmett–Teller (BET), respectively. Among the metal oxides investigated, the CaO catalyst showed the best catalytic activity toward the transesterification process as it gave the highest conversion of methyl palmitate and yielded fatty esteramine compositions similar to the conventional homogeneous catalyst. The optimum transesterification condition by using the CaO catalyst utilized a lower vacuum system of approximately 200 mbar, which could minimize a considerable amount of energy consumption. Furthermore, low CaO dosage of 0.1% was able to give a conversion of 94.5% methyl ester and formed esteramine at 170 °C for 2 h. Therefore, the production of esterquats from esteramine may become more economically feasible through the methyl ester route by using the CaO catalyst, which can be recycled three times.  相似文献   
8.
In this study, old corrugated container recycled fibers were treated with polyelectrolyte multilayers consisting of biopolymer cationic starch with two degrees of substitution (DS) each in combination with one anionic starch. Pulp zeta potential, paper strength and the thin layer ellipsometry technique were applied to examine the influence of cationic starch DS on the formation of polyelectrolyte multilayers. The results indicated a significant interaction between the DS of cationic starch and the number of ionic starch layers formed. When low‐DS cationic starch was used, the pulp zeta potential and the paper strength increased significantly in assembling the first cationic layer. However, in depositing high‐DS cationic starch a greater zeta potential and a stronger influence on the paper strength were observed with a larger number of starch layers. This was confirmed by thin layer ellipsometry when a greater thickness of multilayers was achieved by employing high‐DS cationic starch to form a higher number of layers. © 2017 Society of Chemical Industry  相似文献   
9.
The application of solvent-aided crystallization (SAC) is based on the addition of a solvent, here 1-butanol, to crude biodiesel to catalyze the purification process by separating biodiesel from contaminants via crystallization process. Response surface methodology was applied to optimize the process parameters of SAC, represented by biodiesel purity. The purified biodiesel was analyzed by means of gas chromatography-mass spectrometry for the composition of the present fatty acid methyl ester (FAME). Under the predicted optimum process conditions within the experimental ranges for the highest biodiesel purity, the predicted biodiesel purity was 99.375 %.  相似文献   
10.
AA7xxx and AISI304 stainless steel (SS) are employed in promising applications. Al alloy-to-SS dissimilar joining is difficult and challenging. Major challenge in the joining of these alloys is the difficulty in mixing of these materials which possess exotic and widely distant properties. AA7475-T761 is a high strength aluminum alloy which is used in key aircraft components. Maiden AA7475-T761 and AISI304 dissimilar joints were fabricated using friction stir welding. Welding was performed with tool having pin diameter of 4 mm and offset of 1.25 mm on Aluminum side. Tool rotational speed, traverse speed and shoulder diameter were varied in the range of 450–560 rpm, 50–63 mm/min, and 12–14 mm, respectively. Mechanical tests showed that joint formed with 14 mm diameter, 560 rpm and 50 mm/min gave the best joint efficiency of 71% of Al-alloy at 7.31% elongation. The materials mixing issues during processing were analyzed with SEM mircrostructure and fractography. Metallography also revealed that offset is critical to the success of joint as it controlled effective mixing of SS and Al in 15 and 85 vol.%, respectively. SS fragments from thermo-mechanically affected zone of SS were found to be partially sheared forming layer of thickness equal to tool traverse/revolution ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号