首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   13篇
工业技术   333篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   12篇
  2020年   8篇
  2019年   8篇
  2018年   15篇
  2017年   11篇
  2016年   18篇
  2015年   18篇
  2014年   21篇
  2013年   46篇
  2012年   19篇
  2011年   40篇
  2010年   14篇
  2009年   20篇
  2008年   11篇
  2007年   6篇
  2006年   5篇
  2005年   11篇
  2004年   8篇
  2003年   3篇
  2002年   9篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1988年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有333条查询结果,搜索用时 171 毫秒
1.
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.  相似文献   
2.
Wireless Personal Communications - During the last two decades, there has been a tremendous growth in the use of MANETs, not only due to the development of the technology but also due to their high...  相似文献   
3.
4.
The low cost, low over-potential loss, good catalytic properties for hydrogen evolution reaction (HER), high corrosion stability, commercially available, and could be applied in pH-neutral solution and ambient temperature are important properties for the cathode materials when it is applied in microbial electrolysis cell (MEC) technology. This study has two-pronged objectives: the first is to investigate the feasibility of titanium (Ti) and graphite felt (GF) coated with nickel (Ni), and the second is to generate hydrogen from the fermentation effluent (FE). The electrodeposition (ED) method was used to deposit Ni catalyst onto Ti (Ni/Ti) and GF (Ni/GF) surfaces. The scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy were used to characterize the cathode morphology and element composition. The catalytic properties of Ni/Ti and Ni/GF could be evaluated using the linear sweep voltammetry tests. The maximum volumetric H2 production rates of MEC using Ni/Ti and Ni/GF cathodes were obtained at 0.39 ± 0.01 and 0.33 ± 0.03 m3 H2 m−3 d−1 respectively. The Ni/Ti and Ni/GF cathodes could be used as alternative cathodes while producing hydrogen from FE.  相似文献   
5.
6.
In this study, the polymer/MWCNT nanocomposites were synthesized from the pristine MWCNT and polymer binders using functionalization with solution processing methods. The synthesized polymer/MWCNT nanocomposites exhibited high specific surface areas than the pristine MWCNT. The MWCNT/Nafion nanocomposite attributed to the maximum peak current at 5.795 × 10?5 (A) while the peak current of MWCNT/PBI was obtained at 3.662 × 10?5 (A). Moreover, polymer/MWCNT based electrocatalysts performed better electrochemical activity because of polymers binders can assist electrochemical interaction using the high surface areas of the catalyst supporting material. Also, the MEAs fabricated using the hot pressing method, while the acid doped PBI membrane sandwiched between the electrodes. The fabricated MEAs were successfully demonstrated in a single cell and found capable of measuring a maximum power density of 112.10 mW/cm2 under 150 °C temperature. In conclusion, the synthesized catalyst-supporting materials enhanced the electrochemical activity and catalyst stability which fulfilling the main objective of this study.  相似文献   
7.
A review of the stabilization of tropical lowland peats   总被引:2,自引:0,他引:2  
The Deep Mixing Method, which involves the formation of in situ stabilized peat columns, is suitable for deep peat stabilization, whereas the mass stabilization technique is used to stabilize the soil of shallow peat deposits instead of the costly and problematic removal and replacement method. The concept of soil-cement stabilization involves the addition of water to cement, resulting in a chemical process known as cement hydration. Stabilization of peat by cement, which requires a significant strength increase in the cement-stabilized peat or organic soil, is attributed largely to physicochemical reactions that include cement hydration, hardening of the resulting cement paste and interactions between soil substances and primary and secondary cementation hydration products. The factors that affect these physicochemical reactions and the interactions of peat soil-cementation products that influence peat stabilization are the amount of solid particles, the water: soil ratio, the quantity of binder, the presence of humic and/or fulvic acids, the soil pH and the amount of organic matter in the peat. With the Air Curing Technique, stabilized peat samples for unconfined compressive strength (UCS) tests were kept at a normal air temperature of 30 ± 2 °C and strengthened by gradual moisture content reduction instead of the usual water-curing technique or water submersion methods that have been common practice in past experiments involving the stabilization of peat with cement. The principle of using the Air Curing Technique to strengthen stabilized peat is that peat soil at its natural moisture content contains sufficient water (water content from 198 to 417 %) that, when mixed with cement, a curing process takes place that causes the stabilized peat soil to gradually lose its moisture content and to become drier and harder throughout the curing period. This process does not require the addition of water.  相似文献   
8.
Journal of Applied Electrochemistry - A microbial fuel cell (MFC) is an electricity-generating device utilising electrochemically active microorganisms as biocatalysts. Using MFC as a biosensor to...  相似文献   
9.
The chemically modified oil palm ash (OPA) with the cetyltrimethylammonium bromide (CTAB) solution was prepared prior to compounding with the natural rubber and other curing ingredients. The aging resistance and thermal stability of CTAB-modified OPA-filled natural rubber composites were evaluated in the same manner as non-modified OPA samples. The retention tensile properties after thermal aging was measured and based on the result shown, the CTAB-modified OPA-filled natural rubber composites imparted insignificant effect to aging resistance as compared to the non-modified OPA-filled natural rubber composites at very low OPA loading; however, the effect became apparent beyond 3 phr OPA loading where the CTAB-modified OPA-filled natural rubber composites provided better aging resistance than the corresponding non-modified OPA-filled natural rubber composites. The thermogravimetric analysis indicated that the CTAB-modified OPA-filled natural rubber composites exhibited lower thermal stability which showed lower temperature at their respective weight loss and lesser char residue than that of non-modified OPA-filled natural rubber composites. This was attributed to the CTAB which started to decompose at the temperature of 210 °C. However, for the range from ambient temperature to 210 °C, the CTAB-modified OPA-filled natural rubber composites produce better thermal stability than those of non-modified OPA-filled natural rubber composites.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号