首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Animal models, particularly rodents, are major translational models for evaluating novel anticancer therapeutics. In this review, different types of nanostructure‐based photosensitizers that have advanced into the in vivo evaluation stage for the photodynamic therapy (PDT) of cancer are described. This article focuses on the in vivo efficacies of the nanostructures as delivery agents and as energy transducers for photosensitizers in animal models. These materials are useful in overcoming solubility issues, lack of tumor specificity, and access to tumors deep in healthy tissue. At the end of this article, the opportunities made possible by these multiplexed nanostructure‐based systems are summarized, as well as the considerable challenges associated with obtaining regulatory approval for such materials. The following questions are also addressed: (1) Is there a pressing demand for more nanoparticle materials? (2) What is the prognosis for regulatory approval of nanoparticles to be used in the clinic?  相似文献   

4.
5.
The nanoplatform GNR‐ACPP‐PpIX (designated as GNR‐ACPI) is designed for dual image guided combined activatable photodynamic therapy (PDT) and photothermal therapy (PTT). In GNR‐ACPI, gold nanorods (GNRs) are modified with a protoporphyrin (PpIX, a PDT agent) conjugated activatable cell penetrating peptide (ACPP), which consists of the matrix metalloproteinases‐2 (MMP‐2) sensitive peptide sequence GPLGLAG. First, the photoactivity of PpIX is effectively quenched by GNRs due to the strong near infrared region light absorption of GNR and the special “U type” structure of ACPP induced close contact between PpIX and GNR. However, once arriving at the tumor site, the GPLGLAG sequence is hydrolyzed by the MMP‐2 overexpressed by tumor cells, resulting in the release of the residual cell membrane penetrating peptide (CPP) attached PpIX (CPP‐PpIX) with the recovery of photoactivity of PpIX. In addition, with the help of CPP, more efficient cellular uptake of PpIX by tumor cells can be achieved, which will greatly improve the PDT efficacy. Moreover, the GNR can also be utilized for photothermic imaging as well as PTT for tumors. It is found that the combination of PTT and PDT under the guidance of dual‐mode imaging greatly enhances the antitumor effects, while possessing negligible systematic toxicity.  相似文献   

6.
7.
8.
Nowadays, photodynamic therapy (PDT) is under the research spotlight as an appealing modality for various malignant tumors. Compared with conventional PDT treatment activated by ultraviolet or visible light, near infrared (NIR) light‐triggered PDT possessing deeper penetration to lesion area and lower photodamage to normal tissue holds great potential for in vivo deep‐seated tumor. In this review, recent research progress related to the exploration of NIR light responsive PDT nanosystems is summarized. To address current obstacles of PDT treatment and facilitate the effective utilization, several innovative strategies are developed and introduced into PDT nanosystems, including the conjugation with targeted moieties, O2 self‐sufficient PDT, dual photosensitizers (PSs)‐loaded PDT nanoplatform, and PDT‐involved synergistic therapy. Finally, the potential challenges as well as the prospective for further development are also discussed.  相似文献   

9.
Near-infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless-based phototherapies by converting deep-tissue-penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep-sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA-approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5-aminolevulinic acid (5-ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR-based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep-tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep-tissue light delivery.  相似文献   

10.
In this study, a fucoidan-based theranostic nanogel(CFN-gel) consisting of a fucoidan backbone, redox-responsive cleavable linker and photosensitizer is developed to achieve acti-vatable near-infrared fluorescence imaging of tumor sites and an enhanced photodynamic therapy(PDT) to induce the com-plete death of cancer cells. A CFN-gel has nanomolar a nity for P-selectin, which is overexpressed on the surface of tumor neovascular endothelial cells as well as many other cancer cells. Therefore, a CFN-gel can enhance tumor accumulation through P-selectin targeting and the enhanced permeation and retention e ect. Moreover, a CFN-gel is non-fluorescent and non-phototoxic upon its systemic administration due to the aggregation-induced self-quenching in its fluorescence and singlet oxygen generation. After internalization into cancer cells and tumor neovascular endothelial cells, its photoactivity is recovered in response to the intracellular redox potential, thereby enabling selective near-infrared fluorescence imaging and an enhanced PDT of tumors. Since a CFN-gel also shows nanomolar a nity for the vascular endothelial growth factor, it also provides a significant anti-tumor e ect in the absence of light treatment in vivo. Our study indicates that a fucoidan-based theranostic nanogel is a new theranostic material for imaging and treating cancer with high e cacy and specificity.  相似文献   

11.
12.
A multifunctional core–satellite nanoconstruct is designed by assembling copper sulfide (CuS) nanoparticles on the surface of [89Zr]‐labeled hollow mesoporous silica nanoshells filled with porphyrin molecules, for effective cancer imaging and therapy. The hybrid nanotheranostic demonstrates three significant features: (1) simple and robust construction from biocompatible building blocks, demonstrating prolonged blood retention, enhanced tumor accumulation, and minimal long‐term systemic toxicity, (2) rationally selected functional moieties that interact together to enable simultaneous tetramodal (positron emission tomography/fluorescence/Cerenkov luminescence/Cerenkov radiation energy transfer) imaging for rapid and accurate delineation of tumors and multimodal image‐guided therapy in vivo, and (3) synergistic interaction between CuS‐mediated photothermal therapy and porphyrin‐mediated photodynamic therapy which results in complete tumor elimination within a day of treatment with no visible recurrence or side effects. Overall, this proof‐of‐concept study illustrates an efficient, generalized approach to design high‐performance core–satellite nanohybrids that can be easily tailored to combine a wide variety of imaging and therapeutic modalities for improved and personalized cancer theranostics in the future.  相似文献   

13.
Developing safe and precise image-guided photodynamic therapy is a challenge. In this study, the hypoxic properties of solid tumors are exploited to construct a hypoxia-responsive photosensitizer, TPA-Azo . Introducing the azo group into the photosensitizer TPA-BN with aggregation-induced emission quenches its fluorescence. When the nonfluorescent TPA-Azo enters hypoxic tumors, it is reduced by the overexpressed azoreductase to generate a fluorescent photosensitizer TPA-BN with an amino group that exhibits fluorescence-activatable image-guided photodynamic therapy with dual-organelle (lipid droplets and lysosomes) targeting. This design strategy provides a basis for the development of fluorescence-activatable photosensitizers.  相似文献   

14.
Conjugated polymers with strong absorbance in the near‐infrared (NIR) region have been widely explored as photothermal therapy agents due to their excellent photostability and high photothermal conversion efficiency. Herein, polypyrrole (PPy) nanoparticles are fabricated by using bovine serum albumin (BSA) as the stabilizing agent, which if preconjugated with photosensitizer chlorin e6 (Ce6) could offer additional functionalities in both imaging and therapy. The obtained PPy@BSA‐Ce6 nanoparticles exhibit little dark toxicity to cells, and are able to trigger both photodynamic therapy (PDT) and photothermal therapy (PTT). As a fluorescent molecule that in the meantime could form chelate complex with Gd3+, Ce6 in PPy@BSA‐Ce6 nanoparticles after being labeled with Gd3+ enables dual‐modal fluorescence and magnetic resonance (MR) imaging, which illustrate strong tumor uptake of those nanoparticles after intravenous injection into tumor‐bearing mice. In vivo combined PDT and PTT treatment is then carried out after systemic administration of PPy@BSA‐Ce6, achieving a remarkably improved synergistic therapeutic effect compared to PDT or PTT alone. Hence, a rather simple one‐step approach to fabricate multifunctional nanoparticles based on conjugated polymers, which appear to be promising in cancer imaging and combination therapy, is presented.  相似文献   

15.
The combination of photodynamic therapy (PDT) and chemotherapy (chemo-photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non-suitable treatment light source, and uncontrollable release of therapeutic agents, result in reduced combined treatment efficacy. This study considered adenosine triphosphate (ATP), which is highly upregulated in tumor cells, as a biomarker and developed ingenious ATP-activated nanoparticles (CDNPs) that are directly self-assembled from near-infrared photosensitizer (Cy-I) and amphiphilic Cd(II) complex (DPA-Cd). After selective entry into tumor cells, the positively charged CDNPs would escape from lysosomes and be disintegrated by the high ATP concentration in the cytoplasm. The released Cy-I is capable of producing single oxygen (1O2) for PDT with 808 nm irradiation and DPA-Cd can concurrently function for chemotherapy. Irradiation with 808 nm light can lead to tumor ablation in tumor-bearing mice after intravenous injection of CDNPs. This carrier-free nanoparticle offers a new platform for chemo-photodynamic therapy.  相似文献   

16.
Two‐photon photodynamic therapy (TP‐PDT) is emerging as a powerful strategy for stereotactic targeting of diseased areas, but ideal photosensitizers (PSs) are currently lacking. This work reports a smart PS with aggregation‐induced emission (AIE) feature, namely DPASP, for TP‐PDT with excellent performances. DPASP exhibits high affinity to mitochondria, superior photostability, large two‐photon absorption cross section as well as efficient reactive oxygen species generation, enabling it to achieve photosensitization both in vitro and in vivo under two‐photon excitation. Moreover, its capability of stereotactic ablation of targeted cells with high‐precision is also successfully demonstrated. All these merits make DPASP a promising TP‐PDT candidate for accurate ablation of abnormal tissues with minimal damages to surrounding areas in the treatment of various diseases.  相似文献   

17.
A multifunctional theranostic platform based on conjugated polymer nanoparticles (CPNs) with tumor targeting, fluorescence detection, photodynamic therapy (PDT), and photothermal therapy (PTT) is developed for effective cancer imaging and therapy. Two conjugated polymers, poly[9,9‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)‐ethyl)fluorenyldivinylene]‐alt‐4,7‐(2,1,3‐benzothiadiazole) with bright red emission and photosensitizing ability and poly[(4,4,9,9‐tetrakis(4‐(octyloxy)phenyl)‐4,9‐dihydro‐s‐indacenol‐dithiophene‐2,7‐diyl)‐alt‐co‐4,9‐bis(thiophen‐2‐yl)‐6,7‐bis(4‐(hexyloxy)phenyl)‐thiadiazolo‐quinoxaline] with strong near‐infrared absorption and excellent photothermal conversion ability are co‐loaded into one single CPN via encapsulation approach using lipid‐polyethylene glycol as the matrix. The obtained co‐loaded CPNs show sizes of around 30 nm with a high singlet oxygen quantum yield of 60.4% and an effective photothermal conversion efficiency of 47.6%. The CPN surface is further decorated with anti‐HER2 affibody, which bestows the resultant anti‐HER2‐CPNs superior selectivity toward tumor cells with HER2 overexpression both in vitro and in vivo. Under light irradiation, the PDT and PTT show synergistic therapeutic efficacy, which provides new opportunities for the development of multifunctional biocompatible organic materials in cancer therapy.  相似文献   

18.
Photodynamic therapy (PDT), as an emerging clinically approved modality, has been used for treatment of various cancer diseases. Conventional PDT strategies are mainly focused on superficial lesions because the wavelength of illumination light of most clinically approved photosensitizers (PSs) is located in the UV/VIS range that possesses limited tissue penetration ability, leading to ineffective therapeutic response for deep‐seated tumors. The combination of PDT and nanotechnology is becoming a promising approach to fight against deep tumors. Here, the rapid development of new PDT modalities based on various smartly designed nanocomposites integrating with conventionally used PSs for deep tumor treatments is introduced. Until now many types of multifunctional nanoparticles have been studied, and according to the source of excitation energy they can be classified into three major groups: near infrared (NIR) light excited nanomaterials, X‐ray excited scintillating/afterglow nanoparticles, and internal light emission excited nanocarriers. The in vitro and in vivo applications of these newly developed PDT modalities are further summarized here, which highlights their potential use as promising nano‐agents for deep tumor therapy.  相似文献   

19.
Singlet oxygen, as the main member of reactive oxygen species, plays a significant role in cancer photodynamic therapy. However, the in vivo real‐time detection of singlet oxygen remains challenging. In this work, a Förster resonance energy transfer (FRET)‐based upconversion nanoplatform for monitoring the singlet oxygen in living systems is developed, with the ability to evaluate the in vivo dose–effect relationship between singlet oxygen and photodynamic therapy (PDT) efficacy. In details, this nanoplatform is composed of core–shell upconversion nanoparticles (UCNPs), photosensitizer MC540, NIR dye IR‐820, and poly(acryl amine) PAA‐octylamine, where the UCNPs serve as an energy donor while IR‐820 serves as an energy acceptor. The nanoparticles are found to sensitively reflect the singlet oxygen levels generated in the tumor tissues during PDT, by luminescence intensity changes of UNCPs at 800 nm emission. Furthermore, it could also enable tumor treatment with satisfactory biocompatibility. To the best knowledge, this is the first report of a theranostic nanoplatform with the ability to formulate the in vivo dose–effect relationship between singlet oxygen and PDT efficacy and to achieve tumor treatment at the same time. This work might also provide an executable strategy to evaluate photodynamic therapeutic efficacy based on singlet oxygen pathway.  相似文献   

20.
Photodynamic therapy(PDT),as one of the noninvasive clinical cancer phototherapies,suffers from the key drawback associated with hypoxia at the tumor microenvironment(TME),which plays an important role in protecting tumor cells from damage caused by common treatments.High concentration of hydrogen peroxide(H2O2),one of the hallmarks of TME,has been recognized as a double-edged sword,posing both challenges,and opportunities for cancer therapy.The promising perspectives,strategies,and approaches for enhanced tumor therapies,including PDT,have been developed based on the fast advances in H2O2-enabled theranostic nanomedicine.In this review,we outline the latest advances in H2O2-responsive materials,including organic and inorganic materials for enhanced PDT.Finally,the challenges and opportunities for further research on H2O2-responsive anticancer agents are envisioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号