首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   28篇
  国内免费   1篇
工业技术   319篇
  2024年   1篇
  2023年   6篇
  2022年   4篇
  2021年   19篇
  2020年   15篇
  2019年   12篇
  2018年   6篇
  2017年   13篇
  2016年   14篇
  2015年   14篇
  2014年   14篇
  2013年   23篇
  2012年   15篇
  2011年   19篇
  2010年   13篇
  2009年   16篇
  2008年   18篇
  2007年   14篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   12篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1987年   1篇
  1985年   4篇
  1981年   3篇
  1979年   1篇
排序方式: 共有319条查询结果,搜索用时 15 毫秒
1.
Maturity-onset diabetes of the young (MODY) type 2 is caused by heterozygous inactivating mutations in the gene encoding glucokinase (GCK), a pivotal enzyme for glucose homeostasis. In the pancreas GCK regulates insulin secretion, while in the liver it promotes glucose utilization and storage. We showed that silencing the Drosophila GCK orthologs Hex-A and Hex-C results in a MODY-2-like hyperglycemia. Targeted knock-down revealed that Hex-A is expressed in insulin producing cells (IPCs) whereas Hex-C is specifically expressed in the fat body. We showed that Hex-A is essential for insulin secretion and it is required for Hex-C expression. Reduced levels of either Hex-A or Hex-C resulted in chromosome aberrations (CABs), together with an increased production of advanced glycation end-products (AGEs) and reactive oxygen species (ROS). This result suggests that CABs, in GCK depleted cells, are likely due to hyperglycemia, which produces oxidative stress through AGE metabolism. In agreement with this hypothesis, treating GCK-depleted larvae with the antioxidant vitamin B6 rescued CABs, whereas the treatment with a B6 inhibitor enhanced genomic instability. Although MODY-2 rarely produces complications, our data revealed the possibility that MODY-2 impacts genome integrity.  相似文献   
2.
3.
4.
5.
6.
The effects of air inlet configuration on pool fire behavior in a mechanically ventilated cabin were investigated. The closed cabin used was a model of a certain machinery cabin on a naval ship. Two air inlet configurations of one vent and two vents were taken into account together with five different elevations of air inlet. In one-vent cases, mass loss rate and gas temperature were lower and oxygen concentrations were higher than those of two-vent cases. With the increase of air inlet elevation, a sudden drop in average mass loss rate and peak temperature were found in the two-vent cases at the air inlet elevation of 1.56 m. In one-vent cases, a similar drop in average mass loss rate was found at the air inlet elevation of 0.88 m, while the peak temperature was almost unaffected by inlet elevation. According to temperature profiles and the characteristic parameter of the smoke layer stability, the formation of the smoke layer was destroyed by increasing the air inlet elevation or reducing the air inlets, and furthermore a more uniform distribution could be found. For the current cabin, the one-vent case with a lower air inlet elevation was recommended for smoke control, and the inlet should be set away from the essential equipment and the entrances of the cabin.  相似文献   
7.
8.
Human mitochondrial DNA (mtDNA) is located in discrete DNA-protein complexes, so called nucleoids. These structures can be easily visualized in living cells by utilizing the fluorescent stain PicoGreen®. In contrary, cells devoid of endogenous mitochondrial genomes (ρ0 cells) display no mitochondrial staining in the cytoplasm. A modified restriction enzyme can be targeted to mitochondria to cleave the mtDNA molecules in more than two fragments, thereby activating endogenous nucleases. By applying this novel enzymatic approach to generate mtDNA-depleted cells the destruction of mitochondrial nucleoids in cultured cells could be detected in a time course. It is clear from these experiments that mtDNA-depleted cells can be seen as early as 48 h post-transfection using the depletion system. To prove that mtDNA is degraded during this process, mtDNA of transfected cells was quantified by real-time PCR. A significant decline could be observed 24 h post-transfection. Combination of both results showed that mtDNA of transfected cells is completely degraded and, therefore, ρ0 cells were generated within 48 h. Thus, the application of a mitochondrially-targeted restriction endonuclease proves to be a first and fast, but essential step towards a therapy for mtDNA disorders.  相似文献   
9.
Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive ‘phenotypic entrapment’ entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives.  相似文献   
10.
To identify potential biomarkers for improving diagnosis of melioidosis, we compared plasma metabolome profiles of melioidosis patients compared to patients with other bacteremia and controls without active infection, using ultra-high-performance liquid chromatography-electrospray ionization-quadruple time-of-flight mass spectrometry. Principal component analysis (PCA) showed that the metabolomic profiles of melioidosis patients are distinguishable from bacteremia patients and controls. Using multivariate and univariate analysis, 12 significant metabolites from four lipid classes, acylcarnitine (n = 6), lysophosphatidylethanolamine (LysoPE) (n = 3), sphingomyelins (SM) (n = 2) and phosphatidylcholine (PC) (n = 1), with significantly higher levels in melioidosis patients than bacteremia patients and controls, were identified. Ten of the 12 metabolites showed area-under-receiver operating characteristic curve (AUC) >0.80 when compared both between melioidosis and bacteremia patients, and between melioidosis patients and controls. SM(d18:2/16:0) possessed the largest AUC when compared, both between melioidosis and bacteremia patients (AUC 0.998, sensitivity 100% and specificity 91.7%), and between melioidosis patients and controls (AUC 1.000, sensitivity 96.7% and specificity 100%). Our results indicate that metabolome profiling might serve as a promising approach for diagnosis of melioidosis using patient plasma, with SM(d18:2/16:0) representing a potential biomarker. Since the 12 metabolites were related to various pathways for energy and lipid metabolism, further studies may reveal their possible role in the pathogenesis and host response in melioidosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号