首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A self‐assembled DNA origami (DO)‐gold nanorod (GNR) complex, which is a dual‐functional nanotheranostics constructed by decorating GNRs onto the surface of DNA origami, is demonstrated. After 24 h incubation of two structured DO‐GNR complexes with human MCF7 breast cancer cells, significant enhancement of cell uptake is achieved compared to bare GNRs by two‐photon luminescence imaging. Particularly, the triangle shaped DO‐GNR complex exhibits optimal cellular accumulation. Compared to GNRs, improved photothermolysis against tumor cells is accomplished for the triangle DO‐GNR complex by two‐photon laser or NIR laser irradiation. Moreover, the DO‐GNR complex exhibits enhanced antitumor efficacy compared with bare GNRs in nude mice bearing breast tumor xenografts. The results demonstrate that the DO‐GNR complex can achieve optimal two‐photon cell imaging and photothermal effect, suggesting a promising candidate for cancer diagnosis and therapy both in vitro and in vivo.  相似文献   

2.
田翔  程崟家  张爱清 《功能材料》2020,(4):4084-4089,4095
将疏水性光敏剂原卟啉(PpIX)和亲水性多肽结合,设计并合成一种刺激响应型两亲性嵌合肽PpIX-GGK(TPP)G-GFLGR8 GD(PTGR),利用该多肽在水溶液中能发生自组装行为,从而得到前药胶束。该胶束在RGD肽的作用下能有效富集在表面过度表达整合素αvβ3的肿瘤细胞周围;在R8穿膜肽的帮助下快速进入肿瘤细胞内;由于癌细胞细胞质内存在大量的组织蛋白酶B,其能够有效破坏GFLG多肽片段,导致前药胶束结构瓦解并释放出疏水性PpIX衍生物。此外,在三苯基膦(TPP)的引导下,组织蛋白酶B光敏剂原卟啉(PpIX)能高效富集在线粒体周围,并在特定光照条件下产生大量的活性氧(ROS),从而有效破坏线粒体,进而诱导细胞凋亡和坏死,实现光动力治疗(PDT)肿瘤的目的。这种将光敏剂运输到亚细胞部位的策略,为光动力治疗的高效发挥开辟了一条新的途径。  相似文献   

3.
Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities in current days while the high laser power density demand and low tumor accumulation are key obstacles that have greatly restricted their development. Here, magnetic composite nanoparticles for dual‐modal PTT and PDT which have realized enhanced cancer therapeutic effect by mitochondria‐targeting are reported. Integrating PTT agent and photosensitizer together, the composite nanoparticles are able to generate heat and reactive oxygen species (ROS) simultaneously upon near infrared (NIR) laser irradiation. After surface modification of targeting ligands, the composite nanoparticles can be selectively delivered to the mitochondria, which amplify the cancer cell apoptosis induced by hyperthermia and the cytotoxic ROS. In this way, better photo therapeutic effects and much higher cytotoxicity are achieved by utilizing the composite nanoparticles than that treated with the same nanoparticles missing mitochondrial targeting unit at a low laser power density. Guided by NIR fluorescence imaging and magnetic resonance imaging, then these results are confirmed in a humanized orthotropic lung cancer model. The composite nanoparticles demonstrate high tumor accumulation and excellent tumor regression with minimal side effect upon NIR laser exposure. Therefore, the mitochondria‐targeting composite nanoparticles are expected to be an effective phototherapeutic platform in oncotherapy.  相似文献   

4.
Conjugated polymers with strong absorbance in the near‐infrared (NIR) region have been widely explored as photothermal therapy agents due to their excellent photostability and high photothermal conversion efficiency. Herein, polypyrrole (PPy) nanoparticles are fabricated by using bovine serum albumin (BSA) as the stabilizing agent, which if preconjugated with photosensitizer chlorin e6 (Ce6) could offer additional functionalities in both imaging and therapy. The obtained PPy@BSA‐Ce6 nanoparticles exhibit little dark toxicity to cells, and are able to trigger both photodynamic therapy (PDT) and photothermal therapy (PTT). As a fluorescent molecule that in the meantime could form chelate complex with Gd3+, Ce6 in PPy@BSA‐Ce6 nanoparticles after being labeled with Gd3+ enables dual‐modal fluorescence and magnetic resonance (MR) imaging, which illustrate strong tumor uptake of those nanoparticles after intravenous injection into tumor‐bearing mice. In vivo combined PDT and PTT treatment is then carried out after systemic administration of PPy@BSA‐Ce6, achieving a remarkably improved synergistic therapeutic effect compared to PDT or PTT alone. Hence, a rather simple one‐step approach to fabricate multifunctional nanoparticles based on conjugated polymers, which appear to be promising in cancer imaging and combination therapy, is presented.  相似文献   

5.
A new synergistic treatment that combines photothermal therapy (PTT) and inflammation‐mediated active targeting (IMAT) chemotherapy based on cytopharmaceuticals is developed. During PTT, the photothermal tumor ablation is accompanied by an inflammatory effect and upregulation of inflammatory factors at the tumor site, which may accelerate tumor regeneration. Moreover, PTT‐induced inflammation can also recruit neutrophils (NEs) to the tumor site. To convert the disadvantages of PTT‐induced inflammation into strengths, NEs are investigated as cytopharmaceuticals for IMAT chemotherapy to further inhibit the tumor recurrence after PTT due to the chemotaxis of NEs to the inflammatory sites. In this study, PEGylated gold nanorods (PEG‐GNRs) are explored as the photothermal agent and paclitaxel‐loaded cytopharmaceuticals of NEs as the IMAT chemotherapeutic agent. PTT is conducted at 72 h postinjection of PEG‐GNRs, followed by cytopharmaceuticals for IMAT chemotherapy. It is demonstrated that the cytopharmaceuticals effectively accumulate in the tumor sites after PTT, which leads to a significant enhancement of antitumor efficacy and a reduction in systemic toxicity. These studies suggest that PTT‐induced inflammation further enhances the chemotherapy of cytopharmaceuticals, and the combination of PTT and IMAT chemotherapy may be a promising synergistic strategy for targeted cancer therapy.  相似文献   

6.
Simultaneous photodynamic therapy (PDT) and photothermal therapy (PTT) can reduce the risks of drug leakage, body burden, and preparation complexity in traditional combination PDT/PTT. Here, a versatile nanoporphyrin (Pp18-lipos) self-assembled from lipid–purpurin 18 conjugates (Pp18-lipids) and pure lipids is presented. The as-prepared Pp18-lipos with 2 mol% Pp18-lipids can perform effective PDT and fluorescence imaging. The Pp18-lipos with 65 mol% Pp18 can perform potent PTT and photoacoustic imaging. The chelation of Mn2+ endows the Pp18-lipids-Mn2+ a high T1-weighted magnetic resonance imaging contrast. Notably, pretreatment of low-dose PDT facilitates the endocytosis and tumor accumulation of Pp18-lipos, thus achieving synergistic PDT/PTT. Upon exposure to a single 705 nm-laser, the combination of PDT/PTT achieves a significantly higher tumor growth inhibition rate than PDT or PTT alone. In addition, it is found that the synergistic PDT/PTT triggers more potent anti-tumor immune response including tumor infiltration of immune cells and release of related cytokines.  相似文献   

7.
Bacillus subtilis spores (a simulant of Bacillus anthracis) have been imaged by two-photon luminescence (TPL) microscopy, using gold nanorods (GNRs) functionalized with a cysteine-terminated homing peptide. Control experiments using a peptide with a scrambled amino acid sequence confirmed that the GNR targeting was highly selective for the spore surfaces. The high sensitivity of TPL combined with the high affinity of the peptide labels enables spores to be detected with high fidelity using GNRs at femtomolar concentrations. It was also determined that GNRs are capable of significant TPL output even when irradiated at near infrared (NIR) wavelengths far from their longitudinal plasmon resonance (LPR), permitting considerable flexibility in the choice of GNR aspect ratio or excitation wavelength for TPL imaging.   相似文献   

8.
Photoconversion tunability of fluorophore dye is of great interest in cancer nanomedicine such as fluorescence imaging, photodynamic therapy (PDT), and photothermal therapy (PTT). Herein, this paper reports wavelength‐dependent photoconversional polymeric vesicles of boron dipyrromethene (Bodipy) fluorophore for either PDT under 660 nm irradiation or PTT under 785 nm irradiation. After being assembled within polymeric vesicles at a high drug loading, Bodipy molecules aggregate in the conformations of both J‐type and H‐type, thereby causing red‐shifted absorption into near‐infrared region, ultralow radiative transition, and ideal resistance to photobleaching. Such vesicles further possess enhanced blood circulation, preferable tumor accumulation, as well as superior cell uptake as compared to free Bodipy. In particular, the vesicles mainly generate abundant intracellular singlet oxygen for PDT treatment under 660 nm irradiation, while they primarily produce a potent hyperthermia for PTT with tumor ablation through singlet oxygen‐synergized photothermal necrosis under 785 nm irradiation. This approach provides a facile and general strategy to tune photoconversion characteristics of fluorophore dyes for wavelength‐dependent photoinduced cancer therapy.  相似文献   

9.
In drug delivery, the poor tumor perfusion results in disappointing therapeutic efficacy. Nanomedicines for photodynamic therapy (PDT) greatly need deep tumor penetration due to short lifespan and weak diffusion of the cytotoxic reactive oxygen species (ROS). The damage of only shallow cells can easily cause invasiveness and metastasis. Moreover, even if the nanomedicines enter into deeper lesion, the effectiveness of PDT is limited due to the hypoxic microenvironment. Here, a deep penetrating and oxygen self‐sufficient PDT nanoparticle is developed for balanced ROS distribution within tumor and efficient cancer therapy. The designed nanoparticles (CNPs/IP) are doubly emulsified (W/O/W) from poly(ethylene glycol)‐poly(ε‐caprolactone) copolymers doped with photosensitizer IR780 in the O layer and oxygen depot perfluorooctyl bromide (PFOB) inside the core, and functionalized with the tumor penetrating peptide Cys‐Arg‐Gly‐Asp‐Lys (CRGDK). The CRGDK modification significantly improves penetration depth of CNPs/IP and makes the CNPs/IP arrive at both the periphery and hypoxic interior of tumors where the PFOB releases oxygen, effectively alleviating hypoxia and guaranteeing efficient PDT performance. The improved intratumoral distribution of photosensitizer and adequate oxygen supply augment the sensitivity of tumor cells to PDT and significantly improve PDT efficiency. Such a nanosystem provides a potential platform for improved therapeutic index in anticancer therapy.  相似文献   

10.
Activatable theranostic agents that can be activated by tumor microenvironment possess higher specificity and sensitivity. Here, activatable nanozyme‐mediated 2,2′‐azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) loaded ABTS@MIL‐100/poly(vinylpyrrolidine) (AMP) nanoreactors (NRs) are developed for imaging‐guided combined tumor therapy. The as‐constructed AMP NRs can be specifically activated by the tumor microenvironment through a nanozyme‐mediated “two‐step rocket‐launching‐like” process to turn on its photoacoustic imaging signal and photothermal therapy (PTT) function. In addition, simultaneously producing hydroxyl radicals in response to the high H2O2 level of the tumor microenvironment and disrupting intracellular glutathione (GSH) endows the AMP NRs with the ability of enhanced chemodynamic therapy (ECDT), thereby leading to more efficient therapeutic outcome in combination with tumor‐triggered PTT. More importantly, the H2O2‐activated and acid‐enhanced properties enable the AMP NRs to be specific to tumors, leaving the normal tissues unharmed. These remarkable features of AMP NRs may open a new avenue to explore nanozyme‐involved nanoreactors for intelligent, accurate, and noninvasive cancer theranostics.  相似文献   

11.
Conventional chemotherapy shows moderate efficiency against metastatic cancer since it targets only part of the mechanisms regulating tumor growth and metastasis. Here, gold nanorod (GNR)‐based host‐guest nanoplatforms loaded with docetaxel (DTX) and small interfering RNA (siRNA)‐p65 (referred to as DTX‐loaded GNR (GDTX)/p65) for chemo‐, RNA interference (RNAi), and photothermal ablation (PTA) cooperative treatment of metastatic breast cancer are reported. To prepare the nanoplatform, GNRs are first coated with cyclodextrin (CD)‐grafted polyethylenimine (PEI) and then loaded with DTX and siRNA through host–guest interaction with CD and electrostatic interaction with PEI, respectively. Upon near‐infrared laser irradiation, GNRs generate a significant hyperthermia effect to trigger siRNA and DTX release. DTX reduces tumor growth by inhibiting mitosis of cancer cells. Meanwhile, siRNA‐p65 suppresses lung metastasis and proliferation of cancer cells by blocking the nuclear factor kappa B (NF‐κB) pathway and downregulating the downstream genes matrix metalloproteinase‐9 (MMP‐9) and B cell lymphoma‐2 (Bcl‐2). It is demonstrated that GDTX/p65 in combination with laser irradiation significantly inhibits the growth and lung metastasis of 4T1 breast tumors. The antitumor results suggest promising potential of the host–guest nanoplatform for combinational treatment of metastatic cancer by using RNAi, chemotherapy, and PTA.  相似文献   

12.
Malignant melanoma is a highly aggressive tumor resistant to chemotherapy. Therefore, the development of new highly effective therapeutic agents for the treatment of malignant melanoma is highly desirable. In this study, a new class of polymeric photothermal agents based on poly(N‐phenylglycine) (PNPG) suitable for use in near‐infrared (NIR) phototherapy of malignant melanoma is designed and developed. PNPG is obtained via polymerization of N‐phenylglycine (NPG). Carboxylate functionality of NPG allows building multifunctional systems using covalent bonding. This approach avoids complicated issues typically associated with preparation of polymeric photothermal agents. Moreover, PNPG skeleton exhibits pH‐responsive NIR absorption and an ability to generate reactive oxygen species, which makes its derivatives attractive photothermal therapy (PTT)/photodynamic therapy (PDT) dual‐modal agents with pH‐responsive features. PNPG is modified using hyaluronic acid (HA) and polyethylene glycol diamine (PEG‐diamine) acting as the coupling agent. The resultant HA‐modified PNPG (PNPG‐PEG‐HA) shows negligible cytotoxicity and effectively targets CD44‐overexpressing cancer cells. Furthermore, the results of in vitro and in vivo experiments reveal that PNPG‐PEG‐HA selectively kills B16 cells and suppresses malignant melanoma tumor growth upon exposure to NIR light (808 nm), indicating that PNPG‐PEG‐HA can serve as a very promising nanoplatform for targeted dual‐modality PTT/PDT of melanoma.  相似文献   

13.
A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA‐approved iron oxide nanoparticles ferumoxytol to an MMP‐activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO‐ICTs (TNPs). Significant cell death is observed in TNP‐treated MMP‐14 positive MMTV‐PyMT breast cancer cells in vitro, but not MMP‐14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV‐PyMT tumor‐bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO‐ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO‐ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme‐activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens.  相似文献   

14.
In this work, a DNA inter‐strand replacement strategy for therapeutic activity is successfully designed for multimodal therapy. In this multimodal therapy, chlorin e6 (Ce6) photosensitizer molecules are used for photodynamic therapy (PDT), while aptamer‐AuNRs, are used for selective binding to target cancer cells and for photothermal therapy (PTT) with near infrared laser irradiation. Aptamer Sgc8, which specifically targets leukemia T cells, is conjugated to an AuNR by a thiol‐Au covalent bond and then hybridized with a Ce6‐labeled photosensitizer/reporter to form a DNA double helix. When target cancer cells are absent, Ce6 is quenched and shows no PDT effect. However, when target cancer cells are present, the aptamer changes structure to release Ce6 to produce singlet oxygen for PDT upon light irradiation. Importantly, by combining photosensitizer and photothermal agents, PTT/PDT dual therapy supplies a more effective therapeutic outcome than either therapeutic modality alone.  相似文献   

15.
Unlike graphene sheets,graphene nanoribbons (GNRs) can exhibit semiconducting band gap characteristics that can be tuned by controlling impurity doping and the GNR widths and edge structures.However,achieving such control is a major challenge in the fabrication of GNRs.Chevron-type GNRs were recently synthesized via surface-assisted polymerization of pristine or N-substituted oligophenylene monomers.In principle,GNR heterojunctions can be fabricated by mixing two different monomers.In this paper,we report the fabrication and characterization of chevron-type GNRs using sulfur-substituted oligophenylene monomers to produce GNRs and related heterostructures for the first time.First-principles calculations show that the GNR gaps can be tailored by applying different sulfur configurations from cyclodehydrogenated isomers via debromination and intramolecular cyclodehydrogenation.This feature should enable a new approach for the creation of multiple GNR heterojunctions by engineering their sulfur configurations.These predictions have been confirmed via scanning tunneling microscopy and scanning tunneling spectroscopy.For example,we have found that the S-containing GNRs contain segments with distinct band gaps,i.e.,a sequence of multiple heterojunctions that results in a sequence of quantum dots.This unusual intraribbon heterojunction sequence may be useful in nanoscale optoelectronic applications that use quantum dots.  相似文献   

16.
A multifunctional theranostic platform based on conjugated polymer nanoparticles (CPNs) with tumor targeting, fluorescence detection, photodynamic therapy (PDT), and photothermal therapy (PTT) is developed for effective cancer imaging and therapy. Two conjugated polymers, poly[9,9‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)‐ethyl)fluorenyldivinylene]‐alt‐4,7‐(2,1,3‐benzothiadiazole) with bright red emission and photosensitizing ability and poly[(4,4,9,9‐tetrakis(4‐(octyloxy)phenyl)‐4,9‐dihydro‐s‐indacenol‐dithiophene‐2,7‐diyl)‐alt‐co‐4,9‐bis(thiophen‐2‐yl)‐6,7‐bis(4‐(hexyloxy)phenyl)‐thiadiazolo‐quinoxaline] with strong near‐infrared absorption and excellent photothermal conversion ability are co‐loaded into one single CPN via encapsulation approach using lipid‐polyethylene glycol as the matrix. The obtained co‐loaded CPNs show sizes of around 30 nm with a high singlet oxygen quantum yield of 60.4% and an effective photothermal conversion efficiency of 47.6%. The CPN surface is further decorated with anti‐HER2 affibody, which bestows the resultant anti‐HER2‐CPNs superior selectivity toward tumor cells with HER2 overexpression both in vitro and in vivo. Under light irradiation, the PDT and PTT show synergistic therapeutic efficacy, which provides new opportunities for the development of multifunctional biocompatible organic materials in cancer therapy.  相似文献   

17.
X‐ray‐induced photodynamic therapy (X‐PDT) combines both the advantages of radiotherapy (RT) and PDT, and has considerable potential applications in clinical deep‐penetrating cancer therapy. However, it is still a major challenge to prepare monodisperse nanoscintillators with uniform size and high light yield. In this study, a general and rapid synthesis method is presented that can achieve large‐scale preparation of monodisperse and uniform silicate nanoscintillators. By simply adjusting the metal dopants, silicate nanoscintillators with controllable size and X‐ray‐excited optical luminescence (450–900 nm) are synthesized by employing a general ion‐incorporated silica‐templating method. To make full use of external radiation, the silicate nanoscintillators are conjugated with photosensitizer rose bengal and arginylglycylaspartic acid (RGD) peptide, making them intrinsically dual‐modal targeted imaging probes. Both in vitro and in vivo experiments demonstrate that the silicate nanosensitizers can accumulate effectively in tumors and achieve significant inhibitory effect on tumor progression under low‐dose X‐ray irradiation, while minimally affecting normal tissues. The insights gained in this study may provide an attractive route to synthesize nanosensitizers to overcome some of the limitations of RT and PDT in cancer treatment.  相似文献   

18.
Converting solar energy into chemical fuels is increasingly receiving a great deal of attention. In this work, CdS nanoparticles (NPs) are solvothermally anchored onto graphene nanoribbons (GNRs) that are longitudinally unzipped from multiwalled carbon nanotubes. The as‐synthesized CdS/GNR nanocomposites with recyclability present GNR content‐dependent activity in visible‐light‐driven hydrogen evolution from water splitting. In a range of 1–10 wt% GNRs, the CdS/GNR composites with 2 wt% GNRs achieves the greatest hydrogen evolution rate of 1.89 mmol h?1 g?1. The corresponding apparent quantum efficiency is 19.3%, which is ≈3.7 times higher than that of pristine CdS NPs. To elucidate the underlying photocatalytic mechanism, a systematic characterization, including in situ irradiated X‐ray photoelectron spectroscopy and Kelvin probe measurements, is performed. In particular, the interfacial charge transfer pathway and process from CdS NPs to GNRs is revealed. This work may open avenues to fabricate GNR‐based nanocomposites for solar‐to‐chemical energy conversion and beyond.  相似文献   

19.
Graphene oxide/gold nanorod (GO/GNR) nanohybrids were synthesized with a GO- and gold-seed-mediated in situ growth method at room temperature by mixing polystyrene sulfonate (PSS) functionalized GO, secondary growth solution, and gold seeds. Compared with ex situ preparation methods of GO/GNRs or graphene (G)/GNRs, the in situ synthesis of GO/GNRs addressed the issue of the aggregation of the GNRs before their attachment onto the GO. The method is straightforward and environment-friendly. The GO/GNRs showed a remarkable photothermal effect in vitro. The temperature of the GO/GNR nanohybrids increased from 25 to 49.9 °C at a concentration of 50 μg/mL after irradiation with an 808-nm laser (0.4 W/cm2) for 6 min. Additionally, the GO/GNRs exhibited good optical and morphological stability and photothermal properties after six cycles of laser irradiation. Upon injection of the GO/GNRs into xenograft tumors, excellent computed tomography (CT) imaging properties and photothermal effect were obtained. The preclinical CT agent iohexol was combined with the GO/GNRs and further enhanced CT imaging. Therefore, the GO/GNR nanohybrids have great potential for precise CT-image-guided tumor photothermal treatment.
  相似文献   

20.
Singlet oxygen (1O2), as an important kind of reactive oxygen species (ROS) and main therapeutic agent in photodynamic therapy (PDT), only have a half‐life of 40 ns and an effective radius of 20 nm, which cause significant obstacles for improving PDT efficacy. In this work, novel upconversion nanoparticle (UCN)‐based nanoplatforms are developed with a minimized distance between UCNs and a photosensitizer, protoporphyrin IX (PpIX), and a controllable payload of PpIX, to enhance and control ROS production. The ability of the nanoplatform to target different subcellular organelles such as cell membrane and mitochondria is demonstrated via surface modification of the nanoplatform with different targeting ligands. The results show that the mitochondria‐targeting nanoplatforms result in significantly increased capability of both tumor cell killing and inhibition of tumor growth. Subcellular targeting of nanoparticles leads to the death of cancer cells in different manners. However, the efficiency of ROS generation almost have no influence on the tumor cell viability during the period of evaluation. These findings suggest that specific subcellular targeting of the nanoplatforms enhances the PDT efficacy more effectively than the increase of ROS production, and may shed light on future novel designs of effective and controllable PDT nanoplatforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号