首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以南京大胜关长江大桥地铁搭载段为研究背景,通过风洞试验,探究不同风攻角、列车位置及附属设施状态下地铁列车气动力系数变化规律,进而揭示地铁列车气动特性对列车运行稳定性影响的规律。研究结果表明:风攻角对双线在轨列车稳定性影响更大;当桥梁无附属设施,风攻角的增大不利于迎风侧列车稳定性,双线在轨列车比单线在轨列车更稳定;当桥梁有附属设施,且列车位于边跨时,风攻角越大迎风侧列车越稳定,而背风侧列车则相反,当列车在中跨运行时,列车侧向力及侧向倾覆力矩系数大于边跨,而升力系数小于边跨,表明桥梁桁架改善了列车的抗倾覆性能;桥上增加附属设施后,列车的侧向力及侧向倾覆力矩系数降低,表明附属设施有一定的格挡作用。  相似文献   

2.
针对阵风场中列车中车二维升力气动导纳展开研究。基于数值模拟的方法,首先验证平板升力气动导纳模拟结果的可靠性,其次对单独列车截面的升力气动导纳及绕流特性进行分析,并与桁架梁、流线型钢箱梁上列车升力气动导纳进行对比。研究结果表明:平板升力气动导纳数值结果与解析解吻合较好,数值识别方法可靠。桥梁主梁上列车升力气动导纳比单独列车升力的气动导纳值偏小,比Sears函数略偏大;当折减频率小于0.01时,流线型钢箱梁上列车升力气动导纳略大于桁架梁上列车气动导纳值。  相似文献   

3.
当速度大于300 km/h的高速列车紧急制动时,风阻制动是一种行之有效的辅助制动措施.基于三维定常不可压的黏性流场N-S和k-ε双方程模型,采用计算流体动力学方法对带制动风翼板的高速列车气动性能做初步分析,分别从列车所受气动阻力、垂向力、横向力、流场气动干扰效应、气动噪声等方面对首排制动风翼板在不同纵向位置、不同迎风角度和不同组风翼板纵向布置的选择做了详细计算说明.初步研究表明:①当头车车顶安装单排制动风翼板的高速列车在行驶速度为350 km/h的过程中采取紧急制动时,列车所受的空气制动阻力比未安装风翼板时增大约45%,所受垂向升力增大约70%;②采用风阻制动时制动风翼板迎风面所受最大压力和平均压力随着速度增大从远环境压力值呈抛物线形式增加,所受最小压力从远环境压力值呈倒抛物线形式减小;③在首排风翼板安装位置距离头车司机室前端流线型尾端连接处2m范围内,列车空气阻力随着距离的增大而降低,所受垂向升力基本保持不变,风翼板前后形成的正负压区范围逐渐变小减弱;④首排制动风翼板迎风角在45°~90°内逐渐扩大时,列车所受空气阻力基本保持不变,垂向升力呈先增大后缓降的趋势,气动干扰效应和风翼板迎风面的高压区域逐步减弱;⑤在列车头车车顶最大等间距布置多组制动风翼板时,随着风翼板布置组数的增多,列车承受的空气阻力缓慢增加,垂向升力基本保持不变,制动风翼板间气动干扰效应逐渐增强,风翼板迎风面受压呈现出第1组的受压最大,后续各组压力峰值基本保持一致,略有波动.  相似文献   

4.
为探明横风作用下车体侧滚对列车气动性能和运行稳定性的影响,采用三维、定常、不可压缩雷诺时均方程和k-ε双方程湍流模型,对CRH5G动车组进行仿真计算。研究结果表明:当侧滚角从0°增加到2.5°时,车底部迎风侧负压减小,绝对值最大相差532 Pa,车顶迎风侧负压增大,绝对值最大相差579 Pa,车底压力变化的区域更大,车顶和车底背风侧的压力变化都不大;头车后部车底负压减小,绝对值最大相差470 Pa;气动力方面,列车升力增大,头车升力变化最为明显,从0.15 k N增加到16.6 k N;头车的点头力矩提升了20%,尾车的点头力矩下降了7%;进一步的车辆动力学仿真计算结果表明:车体侧滚引起的气动载荷变化对列车脱轨系数、倾覆系数的影响很小。因而在研究横风作用下的列车运行稳定性时,一般可不考虑车体侧滚对气动性能的影响。  相似文献   

5.
对我国高速铁路接触线的2∶1比例尺模型进行风洞试验,测量接触线模型在不同紊流场中不同风速下受到的顺风向阻力、横风向升力和垂直方向扭矩,分析接触线模型的阻力系数、升力系数和扭矩系数随风攻角的变化规律,研究接触线模型的截面凹槽对其气动力特性的影响;运用邓哈托垂直振动理论,分析接触线模型的舞动稳定性.结果表明:在-45°和45°风攻角附近,由于风向与接触线模型截面凹槽的斜边接近垂直,使接触线模型受到的气动阻力明显升高;紊流场的增大会降低接触线的气动稳定性,二者呈非线性关系;在无覆冰情况下接触线模型受到的扭矩极小,接触线模型舞动主要是由横风向升力的变化引起;接触线舞动的临界风速与其自振圆频率和机械阻尼成正比.  相似文献   

6.
采用几何缩尺比为1∶40的节段模型,进行天兴州公铁两用大桥气动参数的风洞试验,测量其主桁梁和列车的静力三分力系数、桁梁的气动导数。分析上、下游不同方向来流,桥上有无列车,列车不同位置和不同队列数等对桁梁和列车三分力系数的影响。在均匀流条件下,用自由振动法测量气动导数,采用加权整体最小二乘法对桁梁气动导数进行识别。分析表明:天兴州公铁两用大桥主梁断面具备气动稳定的必要条件;上游来流和下游来流的三分力系数差别不大,小攻角时差别更小;列车在下风侧时的桁梁三分力系数较列车在上风侧时大;列车在桥上运行时,会增大桁梁的升力系数和力矩系数,降低桁梁的阻力系数。  相似文献   

7.
以CRH3型高速列车为研究对象,采用计算流体力学(Computational Fluid Dynamics,CFD)数值模拟方法和动网格技术,通过局部动态层变法实现对侧向风作用下桥上列车交会过程的动态模拟,研究侧向风作用下桥上列车交会过程的空气动力特性。结果表明:无侧风情况下桥上列车交会时所产生的交会压力波是导致列车气动力波动的主要原因;在侧向风的作用下车-桥耦合系统的空气动力特性表现出明显的三维时空特性;与无侧向风作用相比,在侧向风的作用下,两交会列车车体表面的整体压力分布已不再具有对称性,其中迎风侧列车所受风荷载较背风侧列车的大;在列车交会过程中,由于迎风侧列车对侧向风的遮挡效应,使得背风侧列车的风荷载突变更加剧烈,这对背风侧列车过桥的安全性和舒适性更为不利;随着列车运行速度的提高,列车的侧向力系数、倾覆力矩系数逐渐增大,而且其气动力系数在列车交会瞬间的突变更加剧烈。  相似文献   

8.
项叶琴 《上海铁道科技》2011,(3):109-110,116
基于三维、定常、不可压缩N-S方程及k-ε双方程湍流模型,采用数值模拟计算方法分别对高速列车CRH1在不同侧风风速、不同风向角工况下的气动性能进行模拟。研究结果表明:对于不同横风风速,车辆的横向力、升力及倾覆力矩均随着横风风速的增大而增大,但其对应的气动力系数基本保持不变;对于不同风向角,车辆的横向力、升力及倾覆力矩均随着风向角的增大而增大,风向角为75°时,气动力增长率变缓,对应的气动力系数变化与之一致。  相似文献   

9.
对3~8辆编组列车以350km· h-1速度运行时,不同速度横风作用下的气动特性进行仿真研究,并建立列车的阻力系数与列车编组辆数之间的无量纲关系.研究结果表明:对3辆车编组列车的气动特性分析不能取代对其他编成辆数列车的几动特性分析;不同编成辆数列车阻力系数随着横风风速的增加而增大,3辆车编组列车的阻力系数不超过8辆车编组的列车的一半;列车的侧向力系数和倾覆力矩系数随着列车编成辆数的增加而减小;列车编成辆数对头车的阻力系数、升力系数、侧向力系数和倾覆力矩系数影响较小,但是对尾车的影响较大;头车的侧向力系数和倾覆力矩系数明显高于尾车和中间车,尾车的倾覆力矩系数最大值不超过0.4,而头车的最大可达0.7;由于头车的气动安全性比其他位置车辆的低,用头车的气动安全性评估整个列车的气动安全性会偏于保守,但合理、可行.  相似文献   

10.
为研究不同风向角下高速铁路列车气动力特性,分析流线型列车周围流场结构差异对列车气动力影响,以高速铁路典型CRH2列车为研究背景,采用风洞试验和数值模拟相结合的研究手段对不同工况下列车气动力和流场结构进行分析。研究结果表明:测压和测力试验结果具有很好的一致性,数值模拟与风洞试验结果吻合良好,可用来分析风向角对列车气动特性的影响;分析得出头车和中车的风压分布和气动力变化规律显著不同,随着风向角的增大,头车侧力系数和升力系数先增大后减小,在风向角为60°左右达到最大值,中车侧力系数和升力系数一直增大,列车绕流状态具有明显的三维特性,不同风向角下气流绕列车呈不同绕流形式,在小于60°风向角下,列车绕流场主要呈流线型结构绕流特性,而大于60°风向角下,列车绕流场主要表现为钝体绕流特性,两种不同绕流状态导致列车气动力特性差异。  相似文献   

11.
建立受电弓-接触网-列车模型,通过雷诺时均方法研究了横风对受电弓各杆件气动特性的影响。通过改变横风风速、风向角,分析了受电弓的流线、表面压力和涡量等分布,探讨了受电弓各部件阻力系数、升力系数和侧向力系数,对比了各部件与受电弓总作用力系数的关系。研究表明:对于受电弓的滑板、上臂杆及下臂杆部分,其阻力、侧向力系数均随风向角和横风风速的增大呈现出逐渐增大的趋势;滑板阻力系数最大,下臂杆阻力最小;上、下臂杆升力系数为负值,与受电弓相比作用力方向相反。在各杆件中滑板所受气动力占总气动力份额最大。受电弓上部构件受横风和风向角产生的影响显著,其结果对受电弓各杆件气动特性的研究及应用具有重要意义和价值。  相似文献   

12.
侧向气动特性在很大程度上影响着跨坐式单轨车的运行安全性。基于CFD方法对不同侧偏角影响下的某跨坐式单轨列车侧向气动特性进行模拟分析。通过比较分析不同方案下的侧向气动力计算结果及列车周围流场结构,得出随侧偏角的增加跨坐式单轨列车侧向气动力逐渐增大,头车受到的侧向力和侧倾力矩最大,因而侧风对头车的运行安全性影响最大的结论。  相似文献   

13.
采用计算流体力学软件建立桥梁单体、车辆单体以及车桥组合体模型,湍流模型取标准κ-ε模型,计算各模型在不同风攻角时侧向风作用下的气动力系数.考虑风屏障对车辆、桥梁气动性能影响,建立风屏障、桥梁与车辆组合体模型,分析风屏障不同开孔率时车辆、桥梁气动力系数变化规律.结果表明:车辆位于桥上时,桥梁阻力和车辆侧力会增大;桥上车辆侧滚力矩系数明显大于车辆单独存在的情况,且车辆位于桥上迎风侧大于背风侧的情况;安装风屏障后,桥梁阻力和力矩系数随开孔率增大而降低,车辆侧力系数和力矩系数随开孔率增大而增大;为保证风屏障有效性,风屏障开孔率应小于40%.  相似文献   

14.
平原上不同长度集装箱列车横风载荷的数值研究   总被引:3,自引:3,他引:0  
对在横风角为90°的10级横风作用下平原上以120 km/h速度运行的集装箱列车的空气动力载荷进行数值研究。采用平原大气边界底层速度型模拟运行环境,研究对象包括5种模型:机车分别牵引2辆、3辆、10辆载有集装箱的平车的列车模型以及1辆、3辆集装箱平车的周期边界模型。结果表明,机车尾流会削弱第1辆车所载集装箱的升力,第2辆车所载集装箱受到的升力最大;前车尾流导致后车的来流风向角和侧向力依次减少,第1辆车集装箱所受侧向力最大;第2辆车集装箱所受翻滚力矩最大,前3辆车集装箱所受翻滚力矩值比较接近;随列车长度增加,气动载荷在达到其最大值后呈逐渐下降趋势,尾车的绕流作用导致尾车集装箱的气动载荷迅速减少。用周期边界模型模拟长集装箱列车中段的空气动力载荷,其集装箱所受翻滚力矩约为整列车中最大值的80%~84%。  相似文献   

15.
以某公铁两用桥为研究背景,通过大比尺节段模型风洞试验,使用天平测试有无风屏障时公路和铁路车辆气动特性,采用风速仪测试了桥面的风剖面分布,研究了车道和车辆类型对公路桥面车辆气动特性的影响。结果表明:设置风屏障有效降低了公路和铁路桥面的局部风速和车辆的气动力系数;公路桥面车辆气动力系数总体上随车道距风屏障距离的增加而减小,相同风屏障对大货车气动特性的降低程度相对于小货车和客车更为明显;设置风屏障后铁路桥面迎风侧和背风侧列车阻力系数的折减率基本接近,但升力系数的折减率差异较大。  相似文献   

16.
在强侧风作用下,作用于列车的气动力迅速增加,严重影响列车运行的稳定性。本文基于三维、非定常N-S方程,采用动网格技术对货物列车在青藏线路堤上强侧风作用下运行进行了模拟计算,得到棚车、集装箱平车、敞车和罐车4种类型货物列车所受气动力。将计算结果与风洞实验结果进行对比,升力、侧向力和倾覆力矩均吻合较好。计算结果说明:随着侧风速度的增大,作用于棚车、集装箱平车、敞车、罐车的侧向力及倾覆力矩均显著增大;在强侧风作用下,棚车所受侧向力及倾覆力矩最大,故棚车在强侧风作用下较易发生倾覆事故,而罐车所受侧向力及倾覆力矩最小。  相似文献   

17.
环境风对路堤上快运集装箱平车气动力性能影响   总被引:2,自引:2,他引:0  
基于三维、定常、不可压Navier-Stokes方程和k-epsilon双方程湍流模型,采用FLUENT流场计算软件对环境风作用下铁路快运集装箱专用平车(简称集装箱平车)所受气动力进行数值模拟计算。分析列车在铁路路堤上运行时车速和风速对车辆气动性能的影响,得出车辆气动力与车速、风速之间的变化关系。研究结果表明,在环境风作用下,10 m路堤上运行的集装箱平车:1)迎风面处于较大的正压区内,背风面处于负压区内,集装箱平车的背风面、顶部以及底架附近,均有漩涡产生;2)风速为32 m/s、风向角为90°时,车辆所受横向力、升力和倾覆力矩均随着车速的增大而增大;3)车速为160 km/h、风向角为90°时,车辆所受横向力、升力和倾覆力矩随风速的增大而增大;其中倾覆力矩近似与风速的1.6次方成正比。  相似文献   

18.
基于三维非定常可压缩雷诺时均N-S方程和RNGκ-ε双方程湍流模型,采用滑移网格技术,对峡谷风作用下8车编组的高速列车进出隧道气动性能进行模拟,并对沿线风速进行监测。研究表明:列车平地上非定常数值计算所得气动力系数均方根与风洞试验结果规律一致,两者吻合较好。由于受狭道效应和峡谷中地形地貌的共同作用影响,桥上各监测点的风速呈非对称分布。列车从隧道中驶入峡谷风区和从风区驶入隧道中两过程,列车气动力系数变化有明显差别。列车在峡谷风区高速行驶过程中,列车气动力及力矩系数会因受到以峡谷风为主的地形风影响而出现明显波动,其中尾车侧向力系数和头车升力系数受影响变化最大,分别为67%和216%。  相似文献   

19.
侧风风场特征对高速列车气动性能作用的研究   总被引:2,自引:0,他引:2  
侧风风场特征,如均匀风和大气底层边界速度型对高速列车在侧风环境下运行的安全性评估有直接影响.为了准确地评估侧风对在平原上运行的高速列车的影响,基于三维定常可压缩流动的NS方程,采用SSTk-ω两方程湍流模型和有限体积法,对时速350 km的动车组在均匀风和大气底层边界速度型风场中的流场和气动力特性分别进行了数值模拟计算和分析.结果表明:对在平原上运行的高速列车而言,作用于列车的气动升力、侧向力及倾覆力矩均随侧风风向角的增大而迅速增大;当风场为大气底层边界速度型时,列车顶部与底部及两个侧面的压力差小于风场为均匀风时的压力差,侧向力及倾覆力矩均小于风场为均匀风时的力及力矩,升力则随侧风风向角的增加具有不确定性.采用均匀风场评估高速列车在平原侧风环境中运行的安全性,会高估侧风对列车运行安全影响的风险,使得过低地限制列车的安全行驶速度,从而影响列车的正常运行效率.建议采用大气底层边界速度型风场进行评估.  相似文献   

20.
采用数值计算的方法,并在线路实车试验验证其合理性的基础上,研究不同车间风挡内倾角度的变化(0°、2°、4°、6°、8°)对高速列车车间风挡块的气动力以及表面测点压力的影响。研究结果表明:两侧风挡所受侧向力对称性较好,不同内倾角度,背风侧两侧风挡所受侧向力方向均指向外侧,呈现"外推"状态;迎风侧两侧风挡,0°、2°、4°所受侧向力方向指向外侧,呈现"外推"状态,而6°、8°所受侧向力方向指向内侧,呈现"内压"状态;风挡区域复杂的流动导致两侧风挡所受侧向力与内倾角度并不是线性关系。相对于原风挡,除个别测点外,风挡内倾2°、4°、6°、8°各测点的压力值均增大;内倾6°、8°方案风挡区域各测点的压力值均为正压。研究结论为指导高速列车车间风挡的气动设计提供了指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号