首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   765445篇
  免费   11308篇
  国内免费   2197篇
工业技术   778950篇
  2021年   7240篇
  2020年   5575篇
  2019年   6983篇
  2018年   12257篇
  2017年   12441篇
  2016年   13068篇
  2015年   8387篇
  2014年   13879篇
  2013年   36071篇
  2012年   21688篇
  2011年   28833篇
  2010年   22959篇
  2009年   25535篇
  2008年   26097篇
  2007年   25621篇
  2006年   22065篇
  2005年   20114篇
  2004年   19499篇
  2003年   18937篇
  2002年   18235篇
  2001年   17587篇
  2000年   15641篇
  1999年   16009篇
  1998年   39860篇
  1997年   28488篇
  1996年   21667篇
  1995年   17157篇
  1994年   15325篇
  1993年   15137篇
  1992年   11345篇
  1991年   11027篇
  1990年   10792篇
  1989年   10460篇
  1988年   9990篇
  1987年   9017篇
  1986年   8864篇
  1985年   9965篇
  1984年   9100篇
  1983年   8563篇
  1982年   7821篇
  1981年   7960篇
  1980年   7677篇
  1979年   7579篇
  1978年   7547篇
  1977年   8373篇
  1976年   10768篇
  1975年   6663篇
  1974年   6390篇
  1973年   6466篇
  1972年   5517篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
2.
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.  相似文献   
3.
Apical membrane antigen 1 is a microneme protein which plays an indispensable role during Apicomplexa parasite invasion. The detailed mechanism of AMA-1 molecular interaction with its receptor on bovine erythrocytes has not been completely defined in Babesia bovis. This study was focused on identifying the minimum B. bovis AMA-1-derived regions governing specific and high-affinity binding to its target cells. Different approaches were used for detecting ama-1 locus genetic variability and natural selection signatures. The binding properties of twelve highly conserved 20-residue-long peptides were evaluated using a sensitive and specific binding assay based on radio-iodination. B. bovis AMA-1 ectodomain structure was modelled and refined using molecular modelling software. NetMHCIIpan software was used for calculating B- and T-cell epitopes. The B. bovis ama-1 gene had regions under functional constraint, having the highest negative selective pressure intensity in the Domain I encoding region. Interestingly, B. bovis AMA-1-DI (100YMQKFDIPRNHGSGIYVDLG119 and 120GYESVGSKSYRMPVGKCPVV139) and DII (302CPMHPVRDAIFGKWSGGSCV321)-derived peptides had high specificity interaction with erythrocytes and bound to a chymotrypsin and neuraminidase-treatment sensitive receptor. DI-derived peptides appear to be exposed on the protein’s surface and contain predicted B- and T-cell epitopes. These findings provide data (for the first-time) concerning B. bovis AMA-1 functional subunits which are important for establishing receptor-ligand interactions which could be used in synthetic vaccine development.  相似文献   
4.
5.

The presence of Mn(II) in water exceeding the permitted concentration limits declared by the World Health Organization (WHO) influences individuals, animals, and the ecosystem negatively. Therefore, there is a necessity for an efficient material to eliminate this potentially toxic element from wastewater. We herein focused on the adsorptive removal of Mn(II) ions from polluted aqueous media using natural Egyptian glauconite clay (G) and its nanocomposites with modified chitosan (CS). We applied modified chitosan with glutaraldehyde (GL), ethylenediaminetetraacetic acid (EDTA), sodium dodecyl sulfate (SDS), and cetyltrimethyl ammonium bromide (CTAB). The utilized nanocomposites were referred to as GL-CS/G, EDTA-GL-CS/G, SDS-CS/G, and CTAB-CS/G, respectively. The point of zero charge values of the materials were estimated. The adsorption properties of the G clay and its nanocomposites toward the removal of Mn(II) ions from polluted aqueous media as well as the adsorption mechanism were explored using a batch technique. The glauconite (G) and its nanocomposites: GL-CS/G, CTAB-CS/G, EDTA-GL-CS/G, and SDS-CS/G, exhibited maximum adsorption capacity values of 3.60, 24.0, 26.0, 27.0, and 27.9 mg g?1, respectively. The adsorption results fitted well the Langmuir isotherm and pseudo-second-order kinetic models. The estimated thermodynamic parameters: ΔH° (from 1.03 to 5.55 kJ/mol) and ΔG° (from ? 14.5 to ? 18.8 kJ/mol), indicated that Mn(II) ion adsorption process was endothermic, spontaneous, and physisorption controlled. Furthermore, the obtained adsorption results are encouraging and revealing a great potentiality for using the modified adsorbents as accessible adsorbents for Mn(II) ion removal from polluted aqueous solutions, depending on their reusability, high stability, and good adsorption capacities.

Graphic Abstract
  相似文献   
6.
Catalysis Letters - We converted agro-waste Custard Apple Peels (CAP) to ash via thermal treatment, on which Pd(OAc)2 was immobilized easily that produced a low-cost, highly efficient Pd/CAP-ash...  相似文献   
7.
Nutrient Cycling in Agroecosystems - Reducing agriculturally derived diffuse contaminant losses (via non-point sources) from land to water has proven difficult for decades. Owing to the diversity...  相似文献   
8.
Polyamines are ubiquitous, low-molecular-weight aliphatic compounds, present in living organisms and essential for cell growth and differentiation. Copper amine oxidases (CuAOs) oxidize polyamines to aminoaldehydes releasing ammonium and hydrogen peroxide, which participates in the complex network of reactive oxygen species acting as signaling molecules involved in responses to biotic and abiotic stresses. CuAOs have been identified and characterized in different plant species, but the most extensive study on a CuAO gene family has been carried out in Arabidopsis thaliana. Growing attention has been devoted in the last years to the investigation of the CuAO expression pattern during development and in response to an array of stress and stress-related hormones, events in which recent studies have highlighted CuAOs to play a key role by modulation of a multilevel phenotypic plasticity expression. In this review, the attention will be focused on the involvement of different AtCuAOs in the IAA/JA/ABA signal transduction pathways which mediate stress-induced phenotypic plasticity events.  相似文献   
9.
Chameleonic properties, i. e., the capacity of a molecule to hide polarity in non-polar environments and expose it in water, help achieving sufficient permeability and solubility for drug molecules with high MW. We present models of experimental measures of polarity for a set of 24 FDA approved drugs (MW 405-1113) and one PROTAC (MW 1034). Conformational ensembles in aqueous and non-polar environments were generated using molecular dynamics. A linear regression model that predicts chromatographic apparent polarity (EPSA) with a mean unsigned error of 10 Å2 was derived based on separate terms for donor, acceptor, and total molecular SASA. A good correlation (R2=0.92) with an experimental measure of hydrogen bond donor potential, Δlog Poct-tol, was found for the mean hydrogen bond donor SASA of the conformational ensemble scaled with Abraham's A hydrogen bond acidity. Two quantitative measures of chameleonic behaviour, the chameleonic efficiency indices, are introduced. We envision that the methods presented herein will be useful to triage designed molecules and prioritize those with the best chance of achieving acceptable permeability and solubility.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号