首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The objective of the present study was to synthesize Cu doped ZnS nanocore crosslinked with lignocellulose (represented as Cu:ZnS-lignocellulose nanocomposite) for antifungal action against the devastating tea blister blight pathogen Exobasidium vexans. The characteristic features of the nanocomposite were analyzed via different physicochemical techniques like FTIR, XRD, XPS, SEM, SEM–EDX, Elemental mapping, PCS, and UV-PL studies. The FTIR and XPS investigations revealed the crosslinking between lignocellulose and the Cu:ZnS. The presence of lignocellulose was seen to attribute a potent antifungal efficacy, also enhancing the stability of the resulting nanocomposite in aqueous suspensions. The antifungal efficacy confirmed through disk diffusion and broth dilution assays have a maximum zone of inhibition of 1.75 cm2 and a MIC50 of 0.05 mg/ml against E. vexans. Additionally, the antisporulant activity was evident as the basidiospores failed to germinate in presence of the Cu:ZnS-lignocellulose nanocomposites. This shows potential for stemming the rapid infectivity of E. vexans by achieving disease inhibition at the early stage. Finally, the comparison with two commonly used commercial fungicides (copper oxychloride and fluconazole) demonstrated?>?tenfold higher antifungal activity for Cu:ZnS-lignocellulose nanocomposites.

Graphical abstract
  相似文献   

2.

Graphene based magnetic nanohybrids have engrossed considerable research curiosity because of their exceptional properties and diverse applications associated with green chemistry. In this regard, a practical, facile and regioselective preparation of 1,2-diamines from N-tosylaziridine/(S)-(+)-2-Benzyl-1-(p-tolylsulfonyl)aziridine and aryl amines in the presence of magnetically separable graphene based nanohybrid (CoFe@rGO) has been proposed under mild and solvent free conditions. The FT-IR, FE-SEM, XPS, XRD and TEM spectroscopic analysis confirmed the formation of the CoFe@rGO nanohybrids. For unsymmetrical aziridine, nucleophilic attack of aryl amines was observed to take place selectively at the more substituted carbon atom of aziridine ring. Environmentally benign, efficient, shorter reaction time, solvent-free conditions, low catalyst loading, excellent reaction yields and reusability of the catalyst for six consecutive runs without significant loss in its activity are the key advantages of this protocol.

Graphical Abstract
  相似文献   

3.

A series of novel 4-acetamidophenyl 3-((Z)-but-2-enoyl)phenylcarbamate based chalcone moieties have been synthesized via green chemical Ti/Al(OH)3 and Fe/Al(OH)3 nano catalyzed pathway and spectroscopic authentication of these synthesized molecules were interpreted by FT-IR, 1H-NMR, 13C-NMR, Mass and elemental analysis. In-silico molecular docking studies of the compounds exhibited excellent binding energy (??8.06 kcal and ??8.94 kcal) towards the essential requirements of targeted compounds for EGFR receptor bearing quinazoline inhibitor (PDB ID: 1M17(Lapitinib). UV–Vis and fluorescence spectroscopy measurements evidenced that there is a significant effect on the absorption and emission spectra. Cyclic voltammetry (CV) studies reveal that HOMO and LUMO values of the compounds are evidenced that band along with intra molecular charge transfer character (D-π-A). The red shift maxima (500 nm) of the emission spectra in various solvent were increasing with the solvent polarity.

Graphical Abstract
  相似文献   

4.

This study depicts the electrochemical synthesis of nanocomposites based on polyaniline nanorods (NRs) wrap with reduced graphene oxide (PANI–rGO) on ITO substrates for photocurrent generation, photodegradation, and antibacterial applications. The synthesis of PANI–rGO nanocomposites was elaborated by the incorporation of rGO into PANI thin films during electropolymerization in the presence of sulfuric acid. The synthesis of rGO was done by modification on the well-known Hammer’s method. The thin film nanocomposites were characterized by X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (FESEM), UV–Visible and electrochemical photocurrent spectroscopy. FESEM revealed the formation of PANI NRs with diameters of between 50 and 150 nm. The XPS was employed to confirm the compositions of the PANI–rGO nanocomposites. From photoelectrochemical results, the generated photocurrent was improved in the presence of rGO in PANI NRs. Whereas experimental findings show that the introduction of rGO into PANI improved the photoresponse from 7 to 13 µA cm?2. Integration of 3D rGO into PANI results in better photocatalytic performance for the degradation of Congo red (CR). The enhanced photocatalytic activity with the presence of rGO revealed the good potential of PANI-GO nanocomposites for dye degradation. The effective removal of CR of up to 90% has been observed in an acidic medium and is acceptable compared to the surface area of the substrate. At optimum conditions, also the nature of the antibacterial activities has been investigated by ITO/PANI and ITO/PANI–rGO thin films, and the results have shown exhibited antibacterial activity against the growth of E. coli gram-negative bacteria.

Graphical Abstract
  相似文献   

5.

The metal centres of nano-zeolitic imidazolate framework-8(Zinc) and 67(Cobalt) [nZIF-8(Zn) and nZIF-67(Co)] were partially exchanged with titanium (Ti) centres to form bimetallic nZIF-8(Zn/Ti) (52% Ti4+) and nZIF-67(Co/Ti) (38% Ti4+) respectively, for enhanced photocatalytic performance. A morphological and structural analysis by scanning electron microscopy, energy dispersive spectroscopy (EDS)-mapping and powder X-ray diffraction showed that the particle size, distribution, and the structural integrity of the Sodalite frameworks of the parent ZIFs were retained during the exchange process to form the new bimetallic Ti-ZIFs. Fourier transform infrared spectroscopy confirmed that no additional chemical bonds were formed during the process. X-ray photoelectron spectroscopy binding energies confirmed the preservation of the Zn(II), Co(II) and Ti(IV) oxidation states, as well as the Ti-content, consistent with inductively coupled plasma-optical emission spectrometry and EDS measurements. The Ti-exchanged ZIFs showed higher activity during the photocatalytic oxidation of hydroquinone in comparison with their parent ZIFs. Their kinetic rates were nearly five times faster than those of the parent ZIFs, with the first-order rate constants k?=?0.189 min?1 for nZIF-8(Zn/Ti) and k?=?0.139 min?1 for nZIF-67(Co/Ti). These catalysts are efficient, stable, and reusable for three photocatalytic cycles without a significant loss of catalytic activity.

Graphical Abstract
  相似文献   

6.

α-FeOOH nanorods was successfully synthesized by hydrothermal method. The key factors influencing the hydrothermal preparation of this material were reported, and the effects of iron source concentration, alkali reaction time, hydrothermal temperature and hydrothermal time on the morphology and structure of α-FeOOH nanorods were discussed in depth. The synthesized nanomaterials were characterized by XRD, TEM and SEM, and the results showed that each experimental parameter had a great influence on the morphology and structure. The experiment should be carried out with the participation of alkali, and the concentration of iron salt was the key to the formation of nanomaterials, besides, the calcination time and the calcination temperature played important roles in the growth of rod length and diameter. The morphology of the prepared nanorods was controllable, and the nanorods might have potential application value in the fields of drug formulation, adsorption, electrochemistry, etc.

Graphical Abstract

A novel α-FeOOH nanorods was successfully synthesized by hydrothermal method. The effects of iron source concentration, alkali reaction time, hydrothermal temperature and hydrothermal time on the morphology and structure of α-FeOOH nanorods were discussed in depth. The synthesized nanomaterials were characterized by XRD, TEM and SEM, and the morphology of the prepared nanorods was controllable. The nanorods might have potential application value in the fields of drug formulation, adsorption, electrochemistry, etc.

  相似文献   

7.

This work aims to optimize the antibacterial activity of iron oxide nanoparticles (IONPs) against both Gram-positive and Gram-negative bacteria. IONPs were greenly biosynthesized using Moringa oleifera leaves extract, and surface methodology (RSM) based on central composite design (CCD) was employed to investigate the combined effect of various experimental factors on the antibacterial activity of IONPs. The reaction and annealing temperatures besides precursor concentration were set as independent variables, while the antibacterial activity was set as a response to obtain the optimal conditions that maximizes IONPs antibacterial activity. Different characterization techniques such as UV–Vis, FTIR, XRD, SEM, and EDX were employed to study the properties of the biosynthesized nanoparticles. Meanwhile, the antibacterial activity was tested using the disk diffusion method. The characterizations results have confirmed the biosynthesis of Hematite (α-Fe2O3) nanoparticles of rhombohedral structure. The generated model has exhibited predicted values very close to the actual proving its validity to analyze and optimize the studied process. The model indicated that all the investigated parameters and their interactions have significantly affected IONPs antibacterial activity. An optimal antibacterial activity was achieved when biosynthesis factors at their lower levels (? 1). Furthermore, the effect of IONPs size on the antibacterial activity was studied and the results shown that the latter is significantly related to the nanoparticles size.

Graphical Abstract
  相似文献   

8.

A Cd(II)-based metal–organic framework (Cd-MOF), named [Cd2(taptp)(bbibpy)(H2O)·2H2O·DMF]n, was successfully constructed under the condition of solvothermal (H2taptp?=?2-(4-(tetrazol-5-yl)phenoxy)terephthalic acid, bbibpy?=?5,5′-bis(benzimidazol-2-yl)-2,2′-bipyridine, DMF?=?N,N′-dimethylformamide). Cd-MOF was characterized by X-ray single-crystal diffraction, elemental analysis and thermogravimetric (TG) analysis. X-ray single crystal diffraction analysis reveals that Cd-MOF has a two-dimensional (2D) framework structure and crystallizes in the monoclinic system, space group P21/c. The fluorescence quenching experimental results show that Cd-MOF is potential fluorescent material that can selectively and sensitively fluorescent sensing Nitrobenzene. The fluorescence quenching of Cd-MOF belongs to dynamic quenching based on the Stern–Volmer model. The concentration-fluorescence experimental result shows that the detection limit of Cd-MOF for NB is 7.16?×?10–8 M, based on 3σ/Ksv.

Graphical Abstract

A Cd-MOF has been successfully synthesized and characterized. The fluorescence quenching experiments results showed Cd-MOF exhibits sensitive response to NB with detection limit of 7.16?×?10–8 M.

  相似文献   

9.

This article presents two highly fluorescent donor-π-acceptor (D-π-A) moieties containing an electron-donating carbazole and phenothiazine donors fused with electron-withdrawing pyrrolo-quinoline acceptor dyes, PQC and PQPT. We also discussed the polymerization and film-forming process of dye PQC and PQPT doped in poly (methyl methacrylate) (PMMA) and polystyrene (PS) polymer to find their optical applications in polymer-based technology. We investigated the fluorescent properties of dyes PQC and PQPT from 0.01 to 1 wt% in poly(methyl methacrylate) (PMMA). We also investigated the changes in the spectrum shape and shift in wavelength with changes in poly(methyl methacrylate) (PMMA), polystyrene (PS), and TiO2 doped in polystyrene (PS/TiO2). The analysis of surface morphology of prepared polymer samples was done with the help of a scanning electron microscope. The thermal and photostability of synthesized dyes in poly (methyl methacrylate) (PMMA), polystyrene (PS), and TiO2 doped in polystyrene (PS/TiO2) were investigated to get detailed information owing to the application of fluorescent polymers in the field of optoelectronic, nanohybrid coatings in solar concentrators, etc.

Graphical Abstract
  相似文献   

10.

In this study, cost-effective, environmentally friendly well-fabricated SnO2/TiO2 nanocomposite synthesized via hydrothermal route and the photocatalytic activity was validated using the (NH3-trz)[Fe(dipic)2] complex under ultra-violet illumination. The structural features of (NH3-trz)[Fe(dipic)2] complex and catalysts were systematically examined by various characteristics. The photoreactivity of the model compound (NH3-trz)[Fe(dipic)2] in water/binary solvent systems was investigated. The rate of photoreaction (k) of nanocomposite (0.1432 s?1) is higher than the SnO2 (0.0373 s?1) and TiO2 (0.1422 s?1) in H2O:PriOH (70:30%) than the rest of the solvents system. The pathways, mechanistic feature of accumulated reactive species on nanocomposite to induce adherent [Fe(dipic)2]? anion and photo-reductive products were studied.

Graphical Abstract
  相似文献   

11.
12.

Here, we report a facile synthesis of porous zinc-titanium oxide based mixed oxide nanoparticles having Zn/Ti molar ratio 1:2 based on evaporation-induced sol–gel route using Pluronic triblock copolymer P123 as a template. Use of volatile ethanolic media during the evaporation-induced self-assembly (EISA) method facilitates the formation of Zn–Ti mixed oxide heterostructure. Powder XRD data reveals that the composite material displayed ZnTiO3/TiO2 phases. Morphology, composition, porosity, nanostructure and thermal stability have been systematically investigated using small angle powder XRD, FE SEM-EDS, TEM, N2 sorption, FT IR and TG-DTA techniques. The observed BET surface area of Zn–Ti mixed oxide was 231 m2 g?1 with a typical mesopore diameter (~?5 nm) mostly arising from interparticle void space. The Zn–Ti mixed oxide catalyst showed bifunctional activity for Friedel–Craft benzylation of aromatics using benzyl chloride as well as partial oxidation of olefins under mild reaction conditions using dilute aqueous H2O2 as oxidant.

Graphical Abstract

Zn–Ti based porous nanoparticles synthesized using Pluronic P123 copolymer surfactant via EISA method has shown a very high surface area of 231 m2 g?1 and a significant bifunctional role for liquid phase oxidation and benzylation reaction.

  相似文献   

13.

In this research, the performance of metal–organic frameworks (MOFs) of MIL-101(Fe) and MOF-808 as aspirin detoxification agents was evaluated. MIL-101(Fe) was successfully prepared for the first time using the electrochemical method for 30 min under room temperature and pressure. MIL-101(Fe) detoxification capacity was compared to that of MOF-808, which was synthesized by a common solvothermal method at 135 °C for 24 h. The obtained materials were fully confirmed by X-ray diffraction (XRD) with the appearance of MIL-101(Fe) characteristic peaks (at 2θ 8.5°; 9°;16.7°) and MOF-808 (at 2θ 8.3°; 8.7°; 10°; 10.9°), and also confirmed by Fourier transform infrared (FTIR) spectroscopy that shows the coordination between metal and ligand. Based on scanning electron and transmission electron microscopy (SEM and TEM), MIL-101(Fe) has a micro-spindle shape with average particles size of 649.12?±?73.32 nm, while MOF-808 showed irregular shape with average particle sizes of 169.73?±?31.87 nm. Nitrogen sorption isotherm confirmed that both materials could be classified as micro to-meso porous materials by the pore radius of 1.89 nm for each materials with BET surface areas of 131 for MIL-101(Fe), and 847 m2/g for MOF-808, respectively. Based on an in vitro test, in a gastric simulation, MIL-101(Fe) decreased 11.78% of aspirin, while MOF-808 decreased 7.99%. In the intestinal simulation, MIL-101(Fe) and MOF-808 decreased aspirin by 24.06% and 26.74%, respectively. XRD analysis of the MOFs after the detoxification test showed that MIL-101(Fe) has lower stability than MOF-808. FTIR spectra confirmed that aspirin was successfully adsorbed into the MOFs. Transmission electron microscopy showed that aspirin interacted with MIL-101(Fe) on the outer surface and with MOF-808 on the inside of the pores.

Graphical Abstract
  相似文献   

14.

In this study, graphene oxide used as a stable support to adsorb and stabilize palladium nanoparticles for preparing a heterogeneous nanocatalyst. In order to increase the palladium adsorption, the surface of graphene oxide was functionalized with β-Cyclodextrin and cyanoguanidine compounds. The prepared nanocatalyst was defined by various characterization techniques such as FT-IR, XRD, TEM, SEM–EDX, ICP and UV–Vis. The catalytic efficiency of the synthesized organic–inorganic nanocomposite investigated by focusing on the Suzuki–Miyaura binding reaction and reduction of 4-nitrophenol to 4-aminophenol, which the nanocatalyst work is easy, affordable, and environmentally safe. The performed reaction showed high yields of biphenyl compounds through the Suzuki–Miyaura reaction and confirms very good conversion of 4-nitrophenol to its reduced form. Also, the proposed nanocatalyst presented significant catalytic efficiency (yield: 98% to 91%) after using five times.

Graphical Abstract
  相似文献   

15.

MXenes, as recently emerging lamellar two-dimensional (2D) materials of transition metal carbides and/or nitrides, have attracted intensive attention for various applications in sensors, catalysis, energy storage, and biomedicine owing to their fascinating and technologically useful properties. This review presents the current progress of MXene-based materials applied in the field of electrochemical sensors. Firstly, how synthetic strategies and surface modification affect the properties of MXene was emphasized. Secondly, MXene as an electrode material for constructing electrochemical sensors based on MXene nanocomposites, especially metal nanoparticles (MNPs)/MXene, conductive polymers (CPs)/MXene, and carbon materials/MXene nanocomposites, was well discussed. Finally, the challenges and outlooks in this field with possible solutions and future opportunities are discussed.

Graphic abstract
  相似文献   

16.
Peng  Qi  Hou  Dejian  Chen  Yanwu  Lin  Litian  Sadeghzadeh  Seyed Mohsen 《Catalysis Letters》2022,152(5):1308-1320

In this paper, we have produced carboxylic acids by the oxidation of various alcohols in the presence of CO2 using SBA-15/IL supported Cu(II) (SBA-15/IL/Cu(II)) as nanocatalyst. The obtained products showed to have excellent yields by taking into account of SBA-15/IL/Cu(II) nanocatalyst. In addition, the analysis of EDX, SEM, TGA, TEM, XPS, and FT-IR showed the heterogeneous structure of SBA-15/IL/Cu (II) catalyst. It is determined that, after using SBA-15 excess, the catalytic stability of the system was enhanced. Moreover, hot filtration provided a full vision in the heterogeneous catalyst nature. The recycling as well as reuse of the catalyst were studied in cases of coupling reactions many times. Moreover, we have studied the mechanism of the coupling reactions.

Graphic Abstract
  相似文献   

17.

3D metal–organic frameworks (MOFs) can be appropriate templates for the fabrication of nanomaterials due to they have active sites exposed on the channel or surface, which thus provide them with improved catalytic performance. In this study, a 3D cobalt-based MOF [Co(H2bpta)]n (Co-MOF), where H4bpta denotes 2,2′,4,4′-biphenyltetracarboxylic acid, has been constructed with the use of a ligand with a high carbon content. On this basis, a 2D magnetic carbon-coated cobalt nanoparticle composite (Co@C) was prepared by using the title MOF under different temperatures. Magnetic Co@C can readily absorb dye from the solution and can thus act as an inexpensive and fast-acting adsorbent. Moreover, we have explored the adsorption isotherms, kinetics and thermodynamics of the anion dyes in detail. The adsorption capacity of the Co@C-800 for investigated methyl orange (MO) and congo red (CR) dyes were 773.48 and 495.66 mg g?1, respectively. It is noteworthy that MO adsorption is higher in existing materials. Thermodynamic studies suggest that the adsorption processes are spontaneous and exothermic. This study opens a new insight into the synthesis and application of carbon-based materials that enable the selective removal of organic dyes.

Graphical Abstract

A Co-MOF has been solvothermal synthesized and structurally characterized, which was used as a combined catalyst and carbon source for the synthesis of magnetic Co@C. Interestingly, the as-grown Co@C-800 exhibits high-performance selective adsorption of anionic dyes (MO and CR) with high adsorption capacities.

  相似文献   

18.

Corrosion inhibition property of a newly synthesized 3-(4-chlorobenzoylmethyl) benzimidazolium bromide inhibitor against carbon steel corrosion in 1 N hydrochloric acid solution was studied and analyzed utilizing various electrochemical methods. Electrochemical impedance study inferred that the inhibition efficiency increased with increasing inhibitor concentration and give 93.5% at 250 ppm. Potentiodynamic polarization study emphasized that inhibitor acted as a mixed type inhibitor and the adsorption of inhibitor on the metal surface followed Langmuir adsorption isotherm. The noise results were in good correlation with other electrochemical results obtained. The increase of inhibition efficiency with concentrations of inhibitor is attributed to the blocking of the active area by the inhibitor adsorption on the metal surface. The thermodynamic parameter values were calculated and discussed to explain the adsorption mechanism of inhibitor in an acidic medium. The protective surface morphology governed by the inhibited medium was investigated using the scanning electron microscopic technique. The surface roughness of the sample in the absence and presence of inhibitor was obtained using atomic force microscopic study. The effect and reactivity of the inhibitor are further clarified with quantum chemical analysis. Finally, the corrosion protection mechanism is proposed on the ground of experimental and theoretical studies.

Graphical abstract
  相似文献   

19.
Mahalakshmi  D.  Saranya  J.  Benhiba  F.  Warad  I.  Zarrouk  A.  Chitra  S. 《Journal of Applied Electrochemistry》2021,51(9):1323-1344

To diminish corrosion which leads to structural damages and to implement a green mitigator has induced the usage of aminothiazolyl coumarin derivatives to study mild steel (MS) corrosion using potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), weight loss, atomic force microscopy (AFM), and electron microscopy with energy dispersive spectroscopy (SEM–EDS) spectrometry in acid medium. The results showed that the inhibition efficiency was 90.8% for the least effective inhibitor and 97.1% for the most effective inhibitor at optimal concentration (10 mM). Enhancement of inhibition efficiency in weight loss method and increase in Rp values in impedance and mixed nature of the inhibition in polarization measurement reveals the best inhibition capacity of coumarins over the MS. The coumarins were characterized using FT-IR, NMR and Mass spectroscopy. The adsorption was well fitted with the Langmuir adsorption isotherm model. SEM–EDS and AFM images confirmed the shielding effect of coumarin derivatives through a layer formation on MS against acid medium. The adsorption mechanism of aminothiazolyl coumarin derivatives was further explored by quantum chemical calculations (DFT) and molecular dynamics (MD).

Graphic abstract
  相似文献   

20.
Huang  Pengpeng  Pan  Deng  Lai  Qian  Jiang  Lihong  Zheng  Yane  Wang  Yaming  Zhi  Yunfei  Shan  Shaoyun  Hu  Tianding  Su  Hongying 《Catalysis Letters》2021,151(10):2851-2863

APO-11 aluminophosphate molecular sieve was prepared by hydrothermal method of aluminum hydroxide with diisopropylamine. Ni–P/APO-11 amorphous alloy catalysts were prepared by chemical reduction method and used for the hydrogenation of α-pinene reaction. The catalysts were characterized by X-Ray photoelectron spectroscopy (XPS), Nitrogen adsorption–desorption isotherms (BET), scanning electron microscope (SEM), transmission electron microscope (TEM) and fourier transform infrared spectrometer (FT-IR).The prepared conditions of the Ni–P/APO-11 catalysts played important roles on the hydrogenation of α-pinene reaction. It was found that the preparation temperature, P/Ni molar ratio and pH value had great influence on the reduction dosage, dispersion and particle sizes of the catalysts, thus affecting the reactivity of the catalysts. The appropriate reaction conditions explored were at 30 °C, n(P/Ni)?=?5 and pH?=?8, obtaining a 90.65% conversion of α-pinene and 97.87% selectivity to cis-pinane. Under these conditions, the catalysts exhibited better repeatability and stability.

Graphic Abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号