首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2763篇
  免费   220篇
  国内免费   14篇
工业技术   2997篇
  2024年   7篇
  2023年   81篇
  2022年   113篇
  2021年   262篇
  2020年   171篇
  2019年   150篇
  2018年   201篇
  2017年   172篇
  2016年   176篇
  2015年   126篇
  2014年   164篇
  2013年   230篇
  2012年   186篇
  2011年   227篇
  2010年   132篇
  2009年   120篇
  2008年   63篇
  2007年   59篇
  2006年   46篇
  2005年   37篇
  2004年   31篇
  2003年   34篇
  2002年   24篇
  2001年   14篇
  2000年   11篇
  1999年   7篇
  1998年   10篇
  1997年   7篇
  1996年   11篇
  1995年   12篇
  1994年   5篇
  1993年   12篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   7篇
  1986年   5篇
  1984年   12篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1980年   6篇
  1977年   4篇
  1976年   4篇
  1975年   5篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有2997条查询结果,搜索用时 31 毫秒
1.
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.  相似文献   
2.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
3.
Individually, photoredox catalysis (PC) and photodynamic therapy (PDT) are well-established concepts that have experienced a remarkable resurgence in recent years, leading to significant progress in organic synthesis for PC and clinical approval of anticancer drugs for PDT. But, very recently, new photoredox catalyst systems based on Ir(III) and Ru(II) complexes have garnered significant interest because they can simultaneously be used as PDT agents apart from their demonstrated PC activity. This highlight discusses the unique PC behavior of emerging Ir(III)- and Ru(II)-based systems while also examining their potential PDT activity in cancer treatment.  相似文献   
4.
5.
Abstract

The expected longer service life of modified asphalt can be jeopardized by different environmental factors, such as moisture, oxidation, etc. which affect the desired properties by altering the adhesive property. An insight into knowledge of the adhesive property of the asphalt can help in providing more durable asphalt pavement. The study attempted to develop different models of adhesive properties of polymers and carbon nanotubes (CNTs) modified asphalt binders. The polymer-CNT modified asphalt is processed to prepare different types of samples, by simulating the damage due to moisture and oxidization, following the corresponding standard method. An Atomic Force Microscopy (AFM) was employed to assess the nanoscale adhesion force of the tested samples following the existing functional group in asphalt. Finally, the study has developed Radial Basis Function Neural Network (RBFNN) as a function of different parameters including; asphalt chemistry (i.e. AFM tip type and constant), type and percentages of polymers and CNTs and different environmental exposures (oxidation, moisture, etc.) to predict the nano adhesion force of asphalt. It is observed that the adhesive property of the Styrene–Butadiene modified asphalt is more consistent compared to the Styrene–Butadiene–Styrene modified asphalt, while the presence of Single-Wall Nanotubes (SWNT) is observed to affect the adhesive properties of asphalt significantly as compared to Multi-Wall Nanotubes (MWNT). The higher accuracy level of RBFNN model also indicates that the functional group (tip-type) adding with the percentages and types of polymers and CNTs significantly affect the adhesive properties of asphalt.  相似文献   
6.
Ahmad  Bilal  Jian  Wang  Enam  Rabia Noor  Abbas  Ali 《Wireless Personal Communications》2021,118(2):1055-1073

As per the most recent literature, Orthogonal Frequency Division Multiplexing (OFDM), a multi access technique, is considered most suitable for the 3G, 4G and 5G techniques in high speed wireless communication. What made OFDM most popular is its ability to deliver high bandwidth efficiency and superior data rate. Besides it, high value of peak to average power ratio (PAPR) and Inter Carrier Interference (ICI) are the challenges to tackle down via appropriate mitigation scheme. As a research contribution in the present work, an improved self-cancellation (SC) technique is designed and simulated through Simulink to mitigate the effect of ICI. This novel proposed technique (Improved SC) is designed over discrete wavelet transform (DWT) based OFDM and compared with conventional SC scheme over different channel conditions i.e. AWGN and Rayleigh fading environments. It is found that proposed DWT-OFDM with Improved SC scheme outperforms conventional SC technique significantly, under both AWGN and Rayleigh channel conditions. Further, in order to justify the novelty in the research contribution, a Split-DWT based Simulink model for Improved SC scheme is investigated to analyse the BER performance. This Split-DWT based Simulink model presented here foretells the future research potential in wavelet hybridization of OFDM to side-line ICI effects more efficiently.

  相似文献   
7.
8.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   
9.
10.
Uddin  Md. Forkan 《Wireless Networks》2019,25(6):3365-3384
Wireless Networks - The existing medium access control (MAC) protocols are not able to utilize the full opportunities from power-domain non-orthogonal multiple access (NOMA) technique in wireless...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号