首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
TVDI在冬小麦春季干旱监测中的应用   总被引:2,自引:0,他引:2  
应用冬小麦春季生长期的NOAA/AVHRR资料,反演归一化植被指数(NDVI)、土壤调整植被指数(SAVI)和下垫面温度(Ts),分析了植被指数和下垫面温度空间特征,采用温度植被旱情指数(TVDI),研究了河北省2005年3~5月的冬小麦旱情状况。结果表明:基于SAVI的温度植被旱情指数与土壤表层相对湿度的相关性好于基于NDVI的温度植被旱情指数。通过与气象站土壤水分观测资料进行相关性分析,表明温度植被旱情指数与10 cm土壤相对湿度关系最好,20 cm次之,50 cm较差。因此,基于SAVI的温度植被旱情指数更适于监测冬小麦春季的旱情。  相似文献   

2.
利用NDVI-T特征空间法进行广东省土壤旱情监测研究   总被引:1,自引:0,他引:1  
详细介绍了利用Landsat ETM 影像反演陆地表面温度(LST),并计算温度植被旱情指数(TVDI)的方法,并在此基础上利用ERDAS的空间建模功能设计了一个半自动化的,基于地表温度和归一化植被指数(NDVI)的旱情指数特征空间模型.该模型的运算结果包括NDVI、陆地表面温度及研究区内相应NDVI的最大和最小陆地表面温度表格,用这些中间结果来计算旱情指数.最后通过该模型在珠江三角洲地区的应用,证明TVDI旱情指数能够较好地反映广东省地区表层土壤旱情出现及分布情况,有助于对该地区春、秋旱的预防和指示.  相似文献   

3.
大范围旱情遥感监测的分带计算   总被引:3,自引:2,他引:1       下载免费PDF全文
遥感技术在旱情监测中得到了广泛应用。针对常用的温度植被旱情指数法, 利用NOAA/AVHRR 数据, 分析了大范围旱情监测中下垫面因纬度、地形等因素造成的空间物候差异, 指出了旱情指数分带计算的必要性。通过分纬度计算, 提高了温度植被旱情指数法中旱边与湿边拟合方程的准确度, 与整体计算方法相比, 温度植被旱情指数与各层土壤相对湿度实测值的相关性均得到明显改善, 提高了大范围旱情遥感监测的准确性。  相似文献   

4.
利用高分辨率ETM+数据进行区域旱情监测的研究   总被引:4,自引:2,他引:2  
在植被指数相同的条件下,地面肤面温度可用于对土壤旱情的监测。通过植被指数--地面肤面温度特征空间分析了利用遥感进行旱情监测的原理,将传感器温度作为地面肤面温度,对干旱指数的计算进行了详细论述。利用栾城县的Landsat7 ETM+卫星数据进行了旱情监测与分析。  相似文献   

5.
在植被指数相同的条件下,地面肤面温度可用于对土壤旱情的监测。通过植被指数——地面肤面温度特征空间分析了利用遥感进行旱情监测的原理,将传感器温度作为地面肤面温度,对干旱指数的计算进行了详细论述。利用栾城县的Landsat7 ETM+卫星数据进行了旱情监测与分析。  相似文献   

6.
比较和分析了目前旱情监测中运用较为广泛的3种模型:土壤热惯量法(ATI)、作物缺水指数法(CW-SI)和温度植被指数法(TVDI)的适用条件,并利用IDL编程实现。以黄河三花间流域为例,利用MODIS影像和气象数据对3种模型进行了计算,并将成果与SEBAL模型计算的蒸散发进行相关分析。结果表明,CWSI和蒸散发的相关性最高,其次是TVDI、ATI。在分析各方法特点的基础上,结合流域特征得到:CWSI和TVDI较适用于研究区域。  相似文献   

7.
针对近年频发的干旱情况不能准确及时监测评估的问题,该文以新疆为研究区域,基于温度植被干旱指数方法,利用2007年到2012年3月~8月MODIS合成产品数据获取归一化植被指数和陆地地表温度,构建LST-NDVI特征空间,得到全区的温度植被干旱指数和旱情等级空间分布图,分析了新疆干旱变化趋势,验证了温度植被干旱指数和降水因子的关系。结果表明:2007年~2012年新疆的干旱面积逐年趋于平稳,空间上表现为南疆旱情高于北疆,春季旱情高于夏季,降水量是影响温度植被干旱指数的重要因子。该研究为政府部门对新疆旱情严重地区治理提供了有效数据保证。  相似文献   

8.
土壤水分是监测土地退化的一个重要指标,是气候、水文、生态、农业等领域的主要参数,在地表与大气界面的水分和能量交换中起重要作用。传统的监测土壤水分的方法只能得到单点的数据,很难获得大范围地区的土壤湿度。遥感能够快速方便地获取大区域的地表信息,因此使用遥感监测土壤水分意义重大。主要利用了温度指标干旱指数对三峡库区进行土壤水分反演及其验证。利用TM6波段的亮温方程,计算得出地表温度(Ts),以TM3、TM4波段计算得出归一化植被指数(NDVI);把Ts和NDVI作为基本参数,根据Ts-NDVI特征空间的形状,取中间范围的NDVI,拟合干湿边方程,确定干湿边参数;根据温度植被干旱指数(TVDI)进行土壤湿度等级划分。结果表明,利用TVDI可以很好地反演出地表的土壤湿度信息。  相似文献   

9.
干旱是人类历史上的重大自然灾害之一,而土壤水分是干旱监测最重要的指标。利用遥感手段反演地表土壤水分,可以充分反映土壤水分的时空变化特征,适合进行大范围动态监测。研究基于Landsat TM数据,运用普适性单通道算法得到地表温度(LST,Land Surface Temperature),然后选用增强型植被指数(EVI,Enhanced Vegetation Index),构建了LST\|EVI特征空间,计算出温度植被干旱指数(TVDI,Temperature\|Vegetation Dryness Index)。在对实测土壤含水量数据和对应TVDI值进行回归分析的基础上,反演出2010年6月14日黄骅市自然地表20 cm深度处的体积含水量。结果表明:TVDI方法在该研究区是完全可行的,拟合精度较高;研究区自然地表土壤体积含水量分布差异明显,中等含水量地区面积最大,西南和部分北部地区含水量较低,而含水量高的区域主要分布在苇洼和沿海地区。  相似文献   

10.
以乌鲁木齐市区为例,利用Landsat TM/ETM+第6波段数据反演地表温度,并计算出其相对温度指数(RTI)。从气温相对性、动态性的角度,对其相对温度指数的变化分布模式进行分析,得出城市热岛的变化特征及其空间分布规律。该方法避免了下垫面复杂性及地-气模型建立的困难性等因素对城市热岛效应变化分析研究的影响。  相似文献   

11.
SEBAL模型及其在区域蒸散研究中的应用   总被引:20,自引:0,他引:20  
蒸散是地表能量平衡与水量平衡的重要参数,遥感技术的发展促进了区域蒸散的研究。基于地表能量平衡方程,SEBAL模型利用遥感影像的可见光、近红外与热红外波段及少量气象数据可计算出区域的日蒸散量,是一个物理概念较为清楚的模型。采用Landsat7 ETM+数据利用SEBAL模型对河北省栾城县进行了遥感蒸散研究,计算获得相关地面特征参数与日蒸散量,模拟结果较为合理。  相似文献   

12.
基于SEBS模型的藏北那曲蒸散量研究   总被引:1,自引:0,他引:1  
SEBS模型为研究高原非均匀地表区域蒸散量估算提供了一种新的方法,为高原气象台站稀少地区蒸散量变化研究提供一定的参考依据。应用SEBS模型,利用MODIS遥感数据反演所需的地表物理参数(如反照率、比辐射率、地表温度和植被覆盖度等),再结合气象站地面观测数据,包括温度、相对湿度、风速、气压等,对藏北那曲地表能量通量和蒸散量进行估算;最后分析了蒸散量与气象因子、NDVI之间的关系。结果表明:2010年藏北那曲蒸散量呈春夏季高,秋冬季低的变化趋势,蒸散量较大区域为研究区南部、东北部和区域内的水体;中部和西北部地区蒸散量较小。气温和地表温度对蒸散量的影响较明显,随着气温和地表温度的升高蒸散量不断增大,NDVI对蒸散量也有一定的影响。所以,SEBS模型在估算高原地区蒸散量方面具有一定的精度,可以满足区域日蒸散发估算的需要。  相似文献   

13.
遥感技术在干旱监测中具有其他技术不可替代的优势。利用2005年8~9月的MODIS产品,获取逐日地表温度数据和逐日植被指数数据,建立了LST\|NDVI特征空间,根据此特征空间建模,计算得出温度植被干旱指数作为表征干旱的监测指标,并结合2005年土壤湿度数据对该指标进行定量验证。在此基础上利用ArcGIS软件分析了2005年8~9月吉林省干旱时空分布特征。结果表明:吉林省干旱总体分布趋势从东南到西北呈现出湿润到正常-轻旱-中旱-重旱的变化规律,体现出吉林省旱情的多样性和复杂性,8月19日、8月25日、9月8日正常和轻旱分布区域面积所占总区域面积比例分别为26.84%和59.53%、41.31%和41.73%、40.40%和32.83%,9月中旬轻旱和中旱分布最广,其比例分别为38.27%和36.26%;重旱和中旱分布区主要位于白城和松原市,轻旱区主要分布在长春、四平和辽源市,正常分布区集中在吉林、通化和白山市境内,湿润分布区主要分布在延边市。  相似文献   

14.
针对太阳诱导叶绿素荧光(Solar-Induced chlorophyll Fluorescence, SIF)可以有效指示陆表植被水分胁迫的特点,提出了归一化叶绿素荧光干旱指数(Normalized SIF Drought Index, NSDI)用于黄淮海地区冬小麦旱情监测。该方法首先基于哨兵-5p卫星(Sentinel-5p)对流层观测仪(Tropospheric Monitoring Instrument, TROPOMI)传感器反演得到的SIF原始产品集,通过0.1°等经纬步长栅格化处理为空间连续数据,然后基于时间序列分析进行了缺失值线性插补,再经过S-G滤波重建获得了高时空分辨率荧光数据集。以此数据集为基础,结合研究区冬小麦分布数据构建NSDI指数。通过选取典型旱情事件对比分析,NSDI指数与同期归一化植被指数(Normalized Difference Vegetation Index, NDVI)以及温度植被干旱指数(Temperature Vegetation Drought Index, TVDI)都有良好的相关性,其中与NDVI的R2为0.60,与TVDI的R2为0.41;NSDI指数与野外土壤水分调查结果也高度相关,其中河北样区R2为0.53,山东样区R2为0.54,整体R2为0.51;通过物联网监测数据分析显示,NSDI指数可以在优于2 d的滞后期内响应旱情的变化,其变化趋势与田间土壤水分保持高度相关。实验结果表明:NSDI指数可以在时空尺度上有效指示黄淮海地区冬小麦旱情。  相似文献   

15.
基于Landsat8热红外遥感数据的山地地表温度地形效应研究   总被引:1,自引:0,他引:1  
地表温度是影响地表能量收支平衡的重要参量,能够综合反演地表的水热交换过程。虽然当前在基于地表温度开展全球或者区域尺度的地表能量平衡研究方面取得一系列的进展,但是面向山地区域尺度的类似研究仍然面临较大的挑战。为分析山地复杂地形对山地地表温度时空分布的影响规律,基于具有较高空间分辨率的Landsat 8热红外数据,以我国西南典型山地为研究对象,定量反演该区域的地表温度空间分布状况,结合SRTM90DEM数据,选择从海拔、坡度和坡向3个关键地形因子角度分析山地地表温度的地形效应特征。结果发现:山地地表温度随地形因子均呈现出十分显著的变化特征。总体而言,地表温度均随着海拔和坡度的升高而降低,而在坡向方面,南坡的温度相比北坡的温度要高。在地形效应分析的基础上,通过开展1km空间尺度地形和地表温度的空间统计分析发现,山地1km尺度下地表温度存在较大的空间异质性,且其影响不可忽略。研究结果表明:开展山地地表水热过程遥感动态监测需高空间分辨率地表温度作为数据支持,以准确描述山地地形因素对地表能量交换过程的影响。  相似文献   

16.
针对单一时段温度-植被指数特征空间干、湿边不稳定的问题,提出利用通用温度-植被指数特征空间改进TVDI指数进行农田干旱遥感监测的方法。利用2006—2015年各年单一时段特征空间干、湿边构建通用特征空间,拟合得到旬通用特征空间干、湿边。采用通用特征空间计算TVDI,结合实测数据进行旬土壤含水量反演模型率定和结果验证,并在河南省小麦种植区进行干旱监测应用分析。结果表明,与单一时段特征空间相比,基于通用特征空间的TVDI与实测数据的相关性更高,指数稳定性更强,土壤含水量估算绝对误差小于10%,均方根误差小于11%,能够有效监测农田旱情。  相似文献   

17.
目前对苹果干旱研究较少且主要运用站点数据,对空间信息表征有限,遥感干旱指数可用于大范围干旱时空动态监测,但在苹果干旱监测中的适用性还有待研究。基于2014~2018年MODIS反射率、地表温度以及地表覆被数据,结合土壤湿度数据和野外调查资料,分析洛川苹果区温度植被干旱指数(TVDI)、归一化植被水分指数(NDWI)、植被供水指数(VSWI)与10 cm深度土壤湿度(SM)的一致性,探索遥感干旱指标对土壤干湿状况表征能力,并进一步研究遥感干旱指标对干旱响应敏感时段。结果表明:①由增强型植被指数(EVI)计算的VSWI与SM的时空一致性最好,其在2014、2017年表现出的干旱特征与实际旱情相符;②VSWI(EVI)和TVDI(EVI)与SM的相关性分别高于VSWI(NDVI)和TVDI(NDVI)与SM的相关性,使用EVI能提高VSWI和TVDI对干旱的表征能力;③TVDI、NDWI、VSWI对SM存在不同时间的反应滞后,滞后3时相(24 d)的VSWI(EVI)与SM的相关性最高,而NDWI对SM滞后时间短,对干旱响应较及时,结合VSWI(EVI)和NDWI可能更有利于监测苹果干旱;④在不同苹果生育期,遥感指标对土壤湿度敏感性不同,VSWI在不同生育期敏感性差异最明显:新梢旺长期(5、6月)对土壤湿度敏感性高于萌芽开花期、果实膨大期、成熟期;该结果符合洛川县苹果不同生育期需水规律和洛川降水、干旱发生特征。研究结果可为遥感监测苹果干旱提供参考依据。  相似文献   

18.
基于遥感的土地利用空间格局分布与地表温度的关系   总被引:3,自引:0,他引:3  
近年由于经济的高速发展,土地利用与覆盖变化很大,促使城市的地表温度值正在逐步升高,城市热岛现象也更加突出。先利用监督分类的最大似然算法对武汉市的ETM影像进行分类,并计算各土地利用类型空间格局分布指数。然后用ETM热红外波段根据单窗算法反演武汉市的地表温度分布,并分别计算各土地利用类型的平均地表温度。最后利用灰色相关分析方法定量分析土地利用空间格局分布指数对地表温度的影响。结果表明武汉市土地利用类型的空间格局分布指数与地表温度有较好的相关性,其中地表温度与散布与并列指数(IJI)、同类斑块相邻百分数指数(PLADJ)和最大斑块所占景观面积比例指数(LPI)的灰色关联度较高,说明地表温度的分布不仅受到各类型斑块与其它斑块相邻情况的影响较大,还受到最大斑块所占的总土地面积比例的影响。  相似文献   

19.
基于MODIS数据的渭河流域土壤水分反演   总被引:2,自引:0,他引:2  
利用MODIS产品数据MOD11A1、MOD13A2和MOD15A2获取地表温度(TS)、昼夜温差(TSD)、表观热惯量(ATI)、归一化植被指数(NDVI)、增强植被指数(EVI)、叶面积指数(LAI),构建渭河流域2006年8月1日、8月6日的TS-NDVI、TS-EVI、TS-LAI、TSD-NDVI、TSD-EVI、TSD-LAI、ATI-NDVI、ATI-EVI、ATI-LAI特征空间,根据TS-NDVI、TS-EVI、TS-LAI、TSD-NDVI、TSD-EVI、TSD-LAI、AI-NDVI、ATI-EVI、ATI-LAI特征空间建立了温度归一化植被指数型干旱指数(TNDI)、温度增强植被指数型干旱指数(TEDI)、温度叶面积指数型干旱指数(TLDI)、温差归一化植被指数型干旱指数(DTNDI)、温差增强植被指数型干旱指数(DTEDI)、温差叶面积指数型干旱指数(DTLDI)、表观热惯量归一化植被指数型干旱指数(ANDI)、表观热惯量增强植被指数型干旱指数(AEDI)、表观热惯量叶面积指数型干旱指数(ALDI),并以这些干旱指数作为土壤水分监测指标,反演了渭河流域2006年8月1日、8月6日的土壤水分.利用TDR实测10cm土壤水分进行相关分析表明: TEDI、TNDI、TLDI在高植被覆盖的地区、低植被覆盖的地区进行土壤水分反演和干旱监测都能取得较好的效果,其中TEDI效果最好;DTNDI、DTEDI、DTLDI、ANDI、AEDI、ALDI比较适合在低植被覆盖的地区进行土壤水分反演和干旱监测,但在高植被覆盖的地区效果较差,不适合进行土壤水分反演和干旱监测.  相似文献   

20.
基于缨帽变换分析地表温度变化   总被引:1,自引:0,他引:1  
利用缨帽变换提取土壤亮度指数、绿度植被指数、湿度指数等地表参数,利用模型提取归一化植被指数NDVI、比值植被指数RVI、修改型土壤调整指数MSAVI等植被指数和水体指数MNDWI,利用Artis单窗算法估算热红外波段像元尺度地表温度,将地表温度的影响因素作为BP神经网络输入估算30m空间分辨率的亚像元地表温度,分析1989~2006年桂林城区土地利用变化、缨帽变换特征分量变化、植被参数变化、水体指数变化对地表温度的影响机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号