首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
基于改进温度植被干旱指数的农田土壤水分反演方法   总被引:1,自引:0,他引:1  
基于植被指数-地表温度(VI-Ts)特征空间的温度植被干旱指数(TVDI)被广泛应用于土壤水分监测,但TVDI为土壤水分相对值,而且利用散点图确定干湿边会造成很大的不确定性。基于能量平衡方程和TVDI,该文提出一种定量干湿边选取方法和改进的TVDI模型——定量温度植被指数(Temperature Vegetation Quantitative Index,TVQI),以MODIS遥感数据为基础,实现了定量干湿边真实土壤水分的遥感估算。结果表明:TVQI估算结果与所观测土壤水分呈0.01水平显著相关,总体上的平均绝对误差小于0.02cm~3/cm~3,均方根误差RMSE小于0.035cm~3/cm~3;相对TVDI,TVQI克服了传统干边计算中对植被覆盖类型的限制,更能够准确反应土壤深度在0~10cm、10cm~20cm的土壤水分值,尤其与10cm~20cm土壤水分值更为贴近。  相似文献   

2.
基于TVDI河北省干热风同期土壤湿度监测研究   总被引:1,自引:0,他引:1  
干热风是高温低湿型的灾害性天气。河北省是干热风易发地区,进行干热风易发期土壤湿度监测研究,对于评估干热风的影响与危害具有重要意义。选用2010年河北省干热风同期5~6月Terra/MODIS8期地表反射率产品MOD09A1和地表温度(LST)产品MOD11A2,通过构建LST\|EVI特征空间,得到温度植被干旱指数(TVDI)反映的河北省各时段的土壤湿度空间分布图。另外分析TVDI值与对应气象站点降水数据变化的趋势关系和二者的定量相关关系,发现降水数据变化与TVDI有较显著的负相关性,通过α=0.05显著性检验。基于研究结果可快速有效地反映研究区土壤湿度等级与空间分布变化状况,与及时更新的气象数据(风速、气温、降水等)相结合,在根据已有指标监测到干热风发生的基础上,评估干热风的影响与危害。  相似文献   

3.
基于植被指数 地表温度(VI Ts)特征空间的温度植被干旱指数(TVDI)被广泛应用于土壤水分监测,但TVDI为土壤水分相对值,而且利用散点图确定干湿边会造成很大的不确定性。基于能量平衡方程和TVDI,该文提出一种定量干湿边选取方法和改进的TVDI模型——定量温度植被指数(Temperature Vegetation Quantitative Index,TVQI),以MODIS遥感数据为基础,实现了定量干湿边真实土壤水分的遥感估算。结果表明:TVQI估算结果与所观测土壤水分呈0.01水平显著相关,总体上的平均绝对误差小于0.02cm3/cm3,均方根误差RMSE小于0.035cm3/cm3;相对TVDI,TVQI克服了传统干边计算中对植被覆盖类型的限制,更能够准确反应土壤深度在0~10cm、10cm~20cm的土壤水分值,尤其与10cm~20cm土壤水分值更为贴近。  相似文献   

4.
基于MODIS和AMSR-E遥感数据的土壤水分降尺度研究   总被引:3,自引:0,他引:3  
微波传感器获得的土壤水分产品空间分辨率一般都很粗,而流域尺度上的研究需要中高分辨率的土壤水分数据。用MODIS逐日地表温度产品MOD11A1和逐日地表反射率产品MOD09GA构建温度-植被指数特征空间,并计算得到TVDI(Temperature Vegetation Dryness Index)指数,它与土壤水分呈负相关关系,能够反映土壤水分的空间分布模式,但并不是真实的土壤水分值。在AMSR-E像元尺度上求得TVDI与土壤水分的负相关系数,进而对VUA AMSR-E土壤水分产品进行降尺度计算得到0.01°分辨率的真实土壤水分值。经NAFE06(The National Airborne Field Experiment 2006)试验地面采样数据验证,降尺度后的土壤水分均方根误差平均值为6.1%。  相似文献   

5.
基于TVDI的大范围干旱区土壤水分遥感反演模型研究   总被引:7,自引:0,他引:7  
温度植被干旱指数TVDI(Temperature Vegetation Dryness Index)是一种基于光学与热红外遥感通道数据进行植被覆盖区域表层土壤水分反演的方法。当研究区域较大、地表覆盖格局差异显著时,利用TVDI模型来反演陆表土壤水分,精度通常较低。对Sandholt的TVDI土壤水分反演模型进行了改进:利用云掩膜校正和多天平均温度合成来减少云的影响;同时对研究区域地形起伏、覆盖类型差异的影响进行了消除;对TVDI模型干边的模拟方法进行了改进。最后,使用铝盒采样等方法利用新疆地区观测得到的地面数据来拟合改进后的模型参数,并对2009年5月和8月的土壤水分进行了反演实验。与实测数据的比较分析表明,该模型能基本满足大区域土壤水分反演的要求,改进后的模型对新疆地区的土壤水分估算精度有较显著的提高。  相似文献   

6.
验证了DisTrad热像元分解模型在华南地区的可行性,发现在高植被覆盖区,由于生物量高,NDVI(Normalized Difference Vegetation Index)指数已接近饱和,在热像元分解时敏感性差。提出用EVI(Enhanced Vegetation Index)指数来代替DisTrad模型中的NDVI参数进行热像元分解。通过华南地区MODIS高分辨率EVI及NDVI资料(250 m)与地表温度(LST)的关系,获得了高分辨率(250 m)LST图像,并利用同步ASTER高分辨率LST图像(90 m)进行了验证。结果表明:即使在NDVI指数已接近饱和的高生物量地区,EVI指数仍然保持较高的敏感度,在高植被覆盖区(如华南地区)用EVI代替DisTrad模型中的NDVI指数能够减少运算量,并能获得更好的热像元分解结果。  相似文献   

7.
为实时准确地对新疆农业干旱程度进行反演监测,以新疆焉耆盆地为例,通过运用时空自适应反射率融合模型(Spatio Temporal Adaptive Reflectivity Fusion Model,STARFM)、增强型STARFM(Enhanced STARFM,ESTARFM)模型及灵活的时空数据融合模型(Flexible Spatio Temporal Data Fusion,FSDAF)这3种常见的模型对Landsat 8和MODIS数据进行融合,构建了温度植被干旱指数(Temperature Vegetation Dryness Index,TVDI),并采用土壤相对湿度(Relative Soil Moisture,RSM)数据对TVDI反演结果进行了验证。结果表明:①3种数据融合模型所模拟预测的干旱因子(归一化植被指数和地表温度)与真实Landsat 8数据所反演的干旱因子相比,ESTARFM模型模拟预测的干旱因子判定系数(R2)和均方根误差(RMSE)均优于其他两种模型,归一化植被指数(NDVI)的R2和RMSE分别达到了0.924和0.076,地表温度(LST)的R2和RMSE分别达到了0.877和2.799;②3种数据融合模型模拟预测的TVDI通过与真实Landsat 8数据反演的TVDI及RSM数据进行对比验证,发现ESTARFM模型模拟预测的TVDI与上述两种数据之间的R2也均优于其他两种模型,分别达到了0.873和0.248。ESTARFM模型在一定程度上更能准确地模拟预测同时期Landsat 8影像的TVDI分布状况。  相似文献   

8.
目前对苹果干旱研究较少且主要运用站点数据,对空间信息表征有限,遥感干旱指数可用于大范围干旱时空动态监测,但在苹果干旱监测中的适用性还有待研究。基于2014~2018年MODIS反射率、地表温度以及地表覆被数据,结合土壤湿度数据和野外调查资料,分析洛川苹果区温度植被干旱指数(TVDI)、归一化植被水分指数(NDWI)、植被供水指数(VSWI)与10 cm深度土壤湿度(SM)的一致性,探索遥感干旱指标对土壤干湿状况表征能力,并进一步研究遥感干旱指标对干旱响应敏感时段。结果表明:①由增强型植被指数(EVI)计算的VSWI与SM的时空一致性最好,其在2014、2017年表现出的干旱特征与实际旱情相符;②VSWI(EVI)和TVDI(EVI)与SM的相关性分别高于VSWI(NDVI)和TVDI(NDVI)与SM的相关性,使用EVI能提高VSWI和TVDI对干旱的表征能力;③TVDI、NDWI、VSWI对SM存在不同时间的反应滞后,滞后3时相(24 d)的VSWI(EVI)与SM的相关性最高,而NDWI对SM滞后时间短,对干旱响应较及时,结合VSWI(EVI)和NDWI可能更有利于监测苹果干旱;④在不同苹果生育期,遥感指标对土壤湿度敏感性不同,VSWI在不同生育期敏感性差异最明显:新梢旺长期(5、6月)对土壤湿度敏感性高于萌芽开花期、果实膨大期、成熟期;该结果符合洛川县苹果不同生育期需水规律和洛川降水、干旱发生特征。研究结果可为遥感监测苹果干旱提供参考依据。  相似文献   

9.
针对太阳诱导叶绿素荧光(Solar-Induced chlorophyll Fluorescence, SIF)可以有效指示陆表植被水分胁迫的特点,提出了归一化叶绿素荧光干旱指数(Normalized SIF Drought Index, NSDI)用于黄淮海地区冬小麦旱情监测。该方法首先基于哨兵-5p卫星(Sentinel-5p)对流层观测仪(Tropospheric Monitoring Instrument, TROPOMI)传感器反演得到的SIF原始产品集,通过0.1°等经纬步长栅格化处理为空间连续数据,然后基于时间序列分析进行了缺失值线性插补,再经过S-G滤波重建获得了高时空分辨率荧光数据集。以此数据集为基础,结合研究区冬小麦分布数据构建NSDI指数。通过选取典型旱情事件对比分析,NSDI指数与同期归一化植被指数(Normalized Difference Vegetation Index, NDVI)以及温度植被干旱指数(Temperature Vegetation Drought Index, TVDI)都有良好的相关性,其中与NDVI的R2为0.60,与TVDI的R2为0.41;NSDI指数与野外土壤水分调查结果也高度相关,其中河北样区R2为0.53,山东样区R2为0.54,整体R2为0.51;通过物联网监测数据分析显示,NSDI指数可以在优于2 d的滞后期内响应旱情的变化,其变化趋势与田间土壤水分保持高度相关。实验结果表明:NSDI指数可以在时空尺度上有效指示黄淮海地区冬小麦旱情。  相似文献   

10.
针对目前干旱指数(temperature vegetation dryness index,TVDI)构建过程中地表温度(land surface temperature,LST)合成方式的不确定性问题,探讨了LST合成方式对TVDI预测精度的影响,提出了预测效果较好的LST合成方式。以巢湖流域为研究区,利用2013年6月的MODIS LST数据和归一化植被指数数据,构建TVDI预测模型,并结合降水数据对该模型预测结果进行定量验证。从不同时间尺度上(旬、月),探讨LST合成方式对于TVDI预测精度的影响。研究结果表明:(1)LST平均值合成构建的干旱指数TVDI与降水距指数(precipitation anomaly,PA)相关性在不同时间尺度上表现出现较大差异,上旬和中旬TVDI与PA均不存在相关性,下旬和全月TVDI与PA存在显著负相关性(p0.01),相关系数分别为-0.31和-0.34;(2)LST最大值合成构建的干旱指数TVDI与PA在不同时间尺度上均存在显著负相关性(p0.01或p0.05),上旬、中旬、下旬及全月相关系数分别为-0.29、-0.25、-0.31、-0.41。综合分析发现,在月尺度上采用LST最大值合成方式构建TVDI指数对干旱预测效果更好。  相似文献   

11.
TVDI在冬小麦春季干旱监测中的应用   总被引:2,自引:0,他引:2  
应用冬小麦春季生长期的NOAA/AVHRR资料,反演归一化植被指数(NDVI)、土壤调整植被指数(SAVI)和下垫面温度(Ts),分析了植被指数和下垫面温度空间特征,采用温度植被旱情指数(TVDI),研究了河北省2005年3~5月的冬小麦旱情状况。结果表明:基于SAVI的温度植被旱情指数与土壤表层相对湿度的相关性好于基于NDVI的温度植被旱情指数。通过与气象站土壤水分观测资料进行相关性分析,表明温度植被旱情指数与10 cm土壤相对湿度关系最好,20 cm次之,50 cm较差。因此,基于SAVI的温度植被旱情指数更适于监测冬小麦春季的旱情。  相似文献   

12.
Soil moisture is an important indicator to describe soil conditions, and can also provide information on crop water stress and yield estimation. The combination of vegetation index (VI) and land surface temperature (LST) can provide useful information on estimation soil moisture status at regional scale. In this paper, the Huang-huai-hai (HHH) plain, an important food production area in China was selected as the study area. The potential of Temperature–Vegetation Dryness Index (TVDI) from Moderate Resolution Imaging Spectroradiometer (MODIS) data in assessing soil moisture was investigated in this region. The 16-day composite MODIS Vegetation Index product (MOD13A2) and 8-day composite MODIS temperature product (MOD11A2) were used to calculate the TVDI. Correlation and regression analysis was carried out to relate the TVDI against in-situ soil moisture measurements data during the main growth stages of winter wheat/summer maize. The results show that a significantly negative relationship exists between the TVDI and in-situ measurements at different soil depths, but the relationship at 10–20 cm depth (R 2?=?0.43) is the closest. The spatial and temporal patterns in the TVDI were also analysed. The temporal evolution of the retrieved soil moisture was consistent with crop phenological development, and the spatial distribution of retrieved soil moisture accorded with the distribution of precipitation during the whole crop growing seasons. The TVDI index was shown to be feasible for monitoring the surface soil moisture dynamically during the crop growing seasons in the HHH plain.  相似文献   

13.
The suitability of using Moderate Resolution Imaging Spectroradiometer (MODIS) images for surface soil moisture estimation to investigate the importance of soil moisture in different applications, such as agriculture, hydrology, meteorology and natural disaster management, is evaluated in this study. Soil moisture field measurements and MODIS images of relevant dates have been acquired. Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Difference Water Index (NDWI) are calculated from MODIS images. In addition, MODIS Land Surface Temperature (LST) data (MOD11A1) are used in this analysis. Four different soil moisture estimation models, which are based on NDVI–LST, EVI–LST, NDVI–LST–NDWI and EVI–LST–NDWI, are developed and their accuracies are assessed. Statistical analysis shows that replacing EVI with NDVI in the model that is based on LST and NDVI increases the accuracy of soil moisture estimation. Accuracy evaluation of soil moisture estimation using check points shows that the model based on LST, EVI and NDWI values gives a higher accuracy than that based on LST and EVI values. It is concluded that the model based on the three indices is a suitable model to estimate soil moisture through MODIS imagery.  相似文献   

14.
Soil moisture is a key parameter in water balance, and it serves as the core and link in atmosphere–vegetation–soil–groundwater systems. Soil moisture directly affects the accuracy of the simulation and prediction conducted by hydrological and atmospheric models. This article aims to develop a new model to retrieve the daily evolution of soil moisture with time series of land surface temperature (LST) and net surface shortwave radiation (NSSR). First, for the time series of soil moisture, LST and NSSR daytime data were simulated by the common land model (CoLM) with different soil types in bare soil areas. Based on these data, the variations between soil moisture and LST-NSSR during the daytime with different soil types were analysed, and a plane function was used to fit the daily evolution of soil moisture and the time series of LST and NSSR data. Further study proved that the coefficients of the soil moisture retrieval model are not sensitive to soil type. Then, a relationship model between the daily evolution of soil moisture and the time series of LST-NSSR was developed and validated using the data simulated by CoLM with different soil types and different atmospheric conditions. To demonstrate the feasibility of the soil moisture retrieval method proposed in this study, it was applied to the African continent with data from the METEOSAT Second Generation Spinning Enhanced Visible and Infrared Imager (MSG–SEVIRI) geostationary satellite. The results show that the variation of soil moisture content can be quantitatively estimated directly by the method at the regional scale with some reasonable assumptions. This study can provide a new method for monitoring the variation of soil moisture, and it also indicates a new direction for deriving the daily variation of soil moisture using the information from the time series of the land surface variables.  相似文献   

15.
ABSTRACT

Land surface temperature (LST) plays a significant role in surface water circulation and energy balance at both global and regional scales. Thermal disaggregation technique, which relies on vegetation indices, has been widely used due to its advantage in producing relatively high resolution LST data. However, the spatial enhancement of satellite LST using soil moisture delineated vegetation indices has not gained enough attention. Here we compared the performances of temperature vegetation dryness index (TVDI), normalized difference vegetation index (NDVI), and fractional vegetation coverage (FVC), in disaggregating LST over the humid agriculture region. The random forest (RF) regression was used to depict the relationship between LST and vegetation indices in implementing thermal disaggregating. To improve the model performance, we used the thin plate spline (TPS) approach to calibrate the RF residual estimation. Results suggested that the models based on TVDI performed better than those based on NDVI and FVC, with a reduced average root mean square error and mean absolute error of 0.20 K and 0.16 K, respectively. Moreover, based on the surface energy balance model, we found the surface evapotranspiration (ET) derived with the TVDI disaggregated LST as inputs achieved higher accuracy than those derived with NDVI and FVC disaggregated LST. It is indicated that TVDI, a soil moisture delineated vegetation indices, can improve the performance of LST enhancement and ET estimation over the humid agriculture region, when combining random forest regression and TPS calibration. This work is valuable for terrestrial hydrology related research.  相似文献   

16.
Based on surface temperature and the normalized difference vegetation index (NDVI), we calculated the temperature vegetation dryness index (TVDI). Using the relationship between TVDI and NDVI, we established a vegetation–soil moisture response model that captures the sensitivity of NDVI's response to changes in TVDI using a linear unmixing approach, and validated the model using Landsat Thematic Mapper (TM) images acquired in 1997, 2004 and 2006 and a Landsat Enhanced Thematic Mapper Plus (ETM+) image acquired in 2000. We determined the correlations between TVDI and field-measured soil moisture in 2006. TVDI was correlated significantly with soil moisture at depths of 0 to 10 cm and 10 to 20 cm, so TVDI can be used as an index that captures changes in soil moisture at these depths. By using fractional vegetation cover (FVC) data measured in the field to validate the estimated values, we estimated mean absolute errors of 0.043 and 0.137 for shrub and grassland vegetation coverage, respectively, demonstrating acceptable estimation accuracy. Based on these results, it is possible to estimate a region's FVC using the linear unmixing model. The results show bare land coverage values distributed similarly to TVDI values. In mountain areas, grassland coverage mostly ranged from 0.4 to 0.6. Shrub coverage mostly ranged from 0.4 to 0.6. Forest coverage was zero in most parts of the study area.  相似文献   

17.
Land Surface Temperature (LST) is an important parameter that describes energy balance of substance and energy exchange between the surface and the atmosphere,and LST has widely used in the fields of urban heat island effect,soil moisture and surface radiative flux.Currently,no satellite sensor can deliver thermal infrared data at both high temporal resolution and spatial resolution,which strongly limits the wide application of thermal infrared data.Based on the MODIS land surface temperature product and Landsat ETM+image,a temporal and spatial fusion method is proposed by combining the TsHARP (Thermal sHARPening) model with the STITFM (Spatio\|Temporal Integrated Temperature Fusion Model) algorithm,defined as CTsSTITFM model in this study.The TsHARP method is used to downscale the 1 km MODIS land surface temperature image to LST data at spatial resolution of 250 m.Then the accuracy is verified by the retrieval LST from Landsat ETM+ image at the same time.Land surface temperature image at 30 m spatial scale is predicted by fusing Landsat ETM+ and downscaling MODIS data using STITFM model.The fusion LST image is validated by the estimated LST from Landsat ETM+ data for the same predicted.The results show that the proposed method has a better precision comparing to the STITFM algorithm.Under the default parameter setting,the predicted LST values using CTsSTITFM fusion method have a root mean square error (RMSE) less than 1.33 K.By adjusting the window size of CTsSTITFM fusion method,the fusion results in the selected areas show some regularity with the increasing of the window.In general,a reasonable window size set may slightly improve the effects of LST fusion.The CTsSTITFM fusion method can solve the problem of mixed pixels caused by coarse\|scale MODIS surface temperature images to some degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号