首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AlGaN/GaN high electron mobility transistors(HEMTs)with high performance were fabricated and characterized.A variety of techniques were used to improve device performance,such as AlN interlayer,silicon nitride passivation,high aspect ratio T-shaped gate,low resistance ohmic contact and short drain-source distance. DC and RF performances of as-fabricated HEMTs were characterized by utilizing a semiconductor characterization system and a vector network analyzer,respectively.As-fabricated devices exhibited a maximum drain current density of 1.41 A/mm and a maximum peak extrinsic transconductance of 317 mS/mm.The obtained current density is larger than those reported in the literature to date,implemented with a domestic wafer and processes.Furthermore, a unity current gain cut-off frequency of 74.3 GHz and a maximum oscillation frequency of 112.4 GHz were obtained on a device with an 80 nm gate length.  相似文献   

2.
Gallium nitride(GaN) has widespread applications in the semiconductor industry because of its desirable optoelectronic properties. The fabrication of surface structures on GaN thin films can effectively modify their optical and electrical properties, providing additional degrees of freedom for controlling GaN-based devices. Compared with lithography-based techniques, laser processing is maskless and much more efficient. This paper shows how surface micronano structures can be produced on GaN thi...  相似文献   

3.
Since the discovery of graphene in 2004, two-dimensional (2D) materials have attracted worldwide interest. They are proved to be the most promising materials for next generation electronic and optoelectronic devices, including transistor, photodetector, sensor, modulator and light-emitting diode. Defects, e.g. vacancies, adatoms, edges, grain boundaries, and substitutional impurities, are inevitable in 2D materials[1]. They will influence the performance of the materials in many aspects such as mechanical, electrical, optical and optoelectronic properties. For example, the presence of sulfur vacancies (SVs) leads to electron donor states within the electronic bandgap. This increases electron concentration and results in n-type characteristic in as-prepared MoS2. They could also give rise to hopping transport behavior in low carrier density and act as scattering centers to reduce the carrier mobility in MoS2. Thus, defect engineering, namely, eliminating the unfavorable defects and introducing beneficial defects is very meaningful, and would be a promising strategy to realize high performance electronic and optoelectronic devices based on 2D materials.  相似文献   

4.
RF-MBE Grown AlGaN/GaN HEMT Structure with High Al Content   总被引:5,自引:5,他引:0  
A Si doped AlGaN/GaN HEMT structure with high Al content (x=43%) in the barrier layer is grown on sapphire substrate by RF-MBE.The structural and electrical properties of the heterostructure are investigated by the triple axis Xray diffraction and Van der PauwHall measurement,respectively.The observed prominent Bragg peaks of the GaN and AlGaN and the Hall results show that the structure is of high quality with smooth interface.The high 2DEG mobility in excess of 1260cm2/(V·s) is achieved with an electron density of 1.429e13cm-2 at 297K,corresponding to a sheet-densitymobility product of 1.8e16V-1·s-1.Devices based on the structure are fabricated and characterized.Better DC characteristics,maximum drain current of 1.0A/mm and extrinsic transconductance of 218mS/mm are obtained when compared with HEMTs fabricated using structures with lower Al mole fraction in the AlGaN barrier layer.The results suggest that the high Al content in the AlGaN barrier layer is promising in improving material electrical properties and device performance.  相似文献   

5.
Current collapses were studied,which were observed in AlGaN/GaN high electron mobility transistors(HEMTs) with and without InGaN back barrier(BB) as a result of short-term bias stress.More serious drain current collapses were observed in InGaN BB AlGaN/GaN HEMTs compared with the traditional HEMTs.The results indicate that the defects and surface states induced by the InGaN BB layer may enhance the current collapse.The surface states may be the primary mechanism of the origination of current collapse in AlGaN/GaN HEMTs for short-term direct current stress.  相似文献   

6.
The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics.As one of the most common thin film devices,thin film transistors (TFTs) are significant building blocks for flexible platforms.Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature,high carrier mobility,and good uniformity.The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors.First,an introduction of flexible electronics and flexible oxide-based thin film transistors is given.Next,we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics,paper sheets,metal foils,and flexible thin glass.Afterwards,applications of flexible oxide-based TFTs including bendable sensors,memories,circuits,and displays are presented.Finally,we give conclusions and a prospect for possible development trends.  相似文献   

7.
The influence of annealed ohmic contact metals on the electron mobility of a two dimensional electron gas (2DEG) is investigated on ungated AlGaN/GaN heterostructures and AlGaN/GaN heterostructure field effect transistors (AlGaN/GaN HFETs). Current-voltage (I-V) characteristics for ungated AlGaN/GaN heterostructures and capacitance-voltage (C-V) characteristics for AlGaN/GaN HFETs are obtained, and the electron mobility for the ungated AlGaN/GaN heterostructure is calculated. It is found that the electron mobility of the 2DEG for the ungated AlGaN/GaN heterostructure is decreased by more than 50% compared with the electron mobility of Hall measurements. We propose that defects are introduced into the AlGaN barrier layer and the strain of the AlGaN barrier layer is changed during the annealing process of the source and drain, causing the decrease in the electron mobility.  相似文献   

8.
正We studied the performance of AlGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) with an AlGaN buffer layer,which leads to a higher potential barrier at the backside of the twodimensional electron gas channel and better carrier confinement.This,remarkably,reduces the drain leakage current and improves the device breakdown voltage.The breakdown voltage of AlGaN/GaN double heterojunction HEMTs (~ 100 V) was significantly improved compared to that of conventional AlGaN/GaN HEMTs(~50 V) for the device with gate dimensions of 0.5 x 100μm and a gate-drain distance of 1μm.The DH-HEMTs also demonstrated a maximum output power of 7.78 W/mm,a maximum power-added efficiency of 62.3%and a linear gain of 23 dB at the drain supply voltage of 35 V at 4 GHz.  相似文献   

9.
正The fabrication of AlGaN/GaN double-channel high electron mobility transistors on sapphire substrates is reported.Two carrier channels are formed in an AlGaN/GaN/AlGaN/GaN multilayer structure.The DC performance of the resulting double-channel HEMT shows a wider high transconductance region compared with single-channel HEMT. Simulations provide an explanation for the influence of the double-channel on the high transconductance region.The buffer trap is suggested to be related to the wide region of high transconductance.The RF characteristics are also studied.  相似文献   

10.
Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IM- PATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A compara- tive study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.  相似文献   

11.
A new surface-potential-based model for AlGaN/AlN/GaN high electron mobility transistor(HEMT) is proposed in this paper. Since the high polarization effects caused by AlN interlayer favorably influence the two dimensional electron gas(2DEG) and scattering mechanisms, we first add spontaneous and piezoelectric charge terms to the source equation of surface-potential, and a mobility model for AlGaN/AlN/GaN HEMT is rewritten. Compared with TCAD simulations, the DC characteristics of AlGaN/AlN/GaN HEMT are faithfully reproduced by the new model.  相似文献   

12.
Using the measured capacitance-voltage curves ofNi/Au Schottky contacts with different areas and the current-voltage characteristics for the A1GaAs/GaAs, A1GaN/A1N/GaN and InoAsA10.szN/A1N/GaN heterostructure field-effect transistors (HFETs) at low drain-source voltage, the two-dimensional electron gas (2DEG) electron mobility for the prepared HFETs was calculated and analyzed. It was found that there is an obvious difference for the variation trend of the mobility curves between the Ⅲ-V nitride HFETs and the A1GaAs/GaAs HFETs. In the III-V nitride HFETs, the variation trend for the curves of the 2DEG electron mobility with the gate bias is closely related to the ratio of the gate length to the drainto-source distance. While the ratio of the gate length to the drainto-source distance has no effect on the variation trend for the curves of the 2DEG electron mobility with the gate bias in the A1GaAs/GaAs HFETs. The reason is attributed to the polarization Coulomb field scattering in the Ⅲ-V nitride HFETs.  相似文献   

13.
In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future.  相似文献   

14.
A scalable large-signal model of AlGaN/GaN High electron mobility transistors (HEMTs) suitable for multi-harmonic characterizations is presented.This model is fulfilled utilizing an improved drain-source current (Ids) formulation with a geometry-dependent thermal resistance (Rth) and charge-trapping modification.The Ids model is capable of accurately modeling the highorder transconductance (gm),which is significant for the prediction of multi-harmonic characteristics.The thermal resistance is identified by the electro-thermal Finite element method (FEM) simulations,which are physically and easily scalable with the finger numbers,unit gate width and power dissipations of the device.Accurate predictions of the quiescent currents,S-parameters up to 40GHz,and large-signal harmonic performance for the devices with different gate peripheries have been achieved by the proposed model.  相似文献   

15.
正We report a high power Ku band internally matched power amplifier(IMPA) with high power added efficiency(PAE) using 0.3μm AlGaN/GaN high electron mobility transistors(HEMTs) on 6H-SiC substrate.The internal matching circuit is designed to achieve high power output for the developed devices with a gate width of 4 mm.To improve the bandwidth of the amplifier,a T type pre-matching network is used at the input and output circuits,respectively.After optimization by a three-dimensional electromagnetic(3D-EM) simulator,the amplifier demonstrates a maximum output power of 42.5 dBm(17.8 W),PAE of 30%to 36.4%and linear gain of 7 to 9.3 dB over 13.8-14.3 GHz under a 10%duty cycle pulse condition when operated at V_(ds) = 30 V and V_(gs)=—4 V.At such a power level and PAE,the amplifier exhibits a power density of 4.45 W/mm.  相似文献   

16.
The growth,fabrication,and characterization of 0.2μm gate-length AlGaN/GaN HEMTs, with a high mobility GaN thin layer as a channel,grown on (0001) sapphire substrates by MOCVD,are described.The unintentionally doped 2.5μm thick GaN epilayers grown with the same conditions as the GaN channel have a room temperature electron mobility of 741cm2/(V·s) at an electron concentration of 1.52e16cm-3.The resistivity of the thick GaN buffer layer is greater than 1e8Ω·cm at room temperature.The 50mm HEMT wafers grown on sapphire substrates show an average sheet resistance of 440.9Ω/□ with uniformity better than 96%.Devices of 0.2μm×40μm gate periphery exhibit a maximum extrinsic transconductance of 250mS/mm and a current gain cutoff frequency of 77GHz.The AlGaN/GaN HEMTs with 0.8mm gate width display a total output power of 1.78W (2.23W/mm) and a linear gain of 13.3dB at 8GHz.The power devices also show a saturated current density as high as 1.07A/mm at a gate bias of 0.5V.  相似文献   

17.
Until very recently, gallium oxide(Ga_2O_3) has aroused more and more interests in the area of power electronics due to its ultra-wide bandgap of 4.5–4.8 eV, estimated critical field of 8 MV/cm and decent intrinsic electron mobility limit of250 cm2/(V·s), yielding a high Baliga's figures-of-merit(FOM) of more than 3000, which is several times higher than GaN and SiC.In addition to its excellent material properties, potential low-cost and large size substrate through melt-grown methodology also endows β-Ga_2O_3 more potential for future low-cost power devices. This article focuses on reviewing the most recent advances ofβ-Ga_2O_3 based power devices. It will be starting with a brief introduction to the material properties of β-Ga_2O_3 and then the growth techniques of its native substrate, followed by the thin film epitaxial growth. The performance of state-of-art β-Ga_2O_3 devices, including diodes and FETs are fully discussed and compared. Finally, potential solutions to the challenges of β-Ga_2O_3 are also discussed and explored.  相似文献   

18.
We report the DC and RF characteristics of AlN/GaN high electron mobility transistors(HEMTs) with the gate length of 100 nm on sapphire substrates. The device exhibits a maximum drain current density of 1.29 A/mm and a peak transconductance of 440 m S/mm. A current gain cutoff frequency and a maximum oscillation frequency of 119 GHz and 155 GHz have been obtained, respectively. Furthermore, the large signal load pull characteristics of the AlN/GaN HEMTs were measured at 29 GHz. An output power density of 429 m W/mm has been demonstrated at a drain bias of 10 V. To the authors’ best knowledge, this is the earliest demonstration of power density at the Ka band for Al N/Ga N HEMTs in the domestic, and also a high frequency of load-pull measurements for Al N/Ga N HEMTs.  相似文献   

19.
Two-dimensional group-VIB transition metal dichalcogenides (with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic (because of their reasonable carrier mobility) and optoelectronic (because of their direct band gap at monolayer thickness) applications.Effective mass is a crucial physical quantity determining carriers transport,and thus the performance of these applications.Here we present based on first-principles high-throughput calculations a computational study of carrier effective masses of the two-dimensional MX2 materials.Both electron and hole effective masses of different MX2 (M =Mo,W and X =S,Se,Te),including in-layer/out-of-layer components,thickness dependence,and magnitude variation in heterostructures,are systemically calculated.The numerical results,chemical trends,and the insights gained provide useful guidance for understanding the key factors controlling carrier effective masses in the MX2 system and further engineering the mass values to improve device performance.  相似文献   

20.
Ge is an attractive material for Si-based microelectronics and photonics due to its high carries mobility, pseudo direct bandgap structure, and the compatibility with complementary metal oxide semiconductor (CMOS) processes. Based on Ge, Ge on insulator (GOI) not only has these advantages, but also provides strong electronic and optical confinement. Recently, a novel technique to fabricate GOI by rapid melting growth (RMG) has been described. Here, we introduce the RMG technique and review recent efforts and progress in RMG. Firstly, we will introduce process steps of RMG. We will then review the researches which focus on characterizations of the GOI including growth dimension, growth mechanism, growth orientation, concentration distribution, and strain status. Finally, GOI based applications including high performance metal–oxide–semiconductor field effect transistors (MOSFETs) and photodetectors will be discussed. These results show that RMG is a promising technique for growth of high quality GOIs with different characterizations. The GOI grown by RMG is a potential material for the next-generation of integrated circuits and optoelectronic circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号