首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生产清洁汽油的新型催化裂化工艺   总被引:3,自引:0,他引:3  
介绍了生产清洁汽油的4种催化裂化新工艺,并与催化裂化工艺在产率分布及汽油性质方面进行了对比。这些新工艺具有依托原提升管催化裂化工业装置,使用常规或专用裂化催化剂,通过对裂化反应、氢转移反应和异构化反应等进行控制与选择,明显降低催化汽油烯烃含量的特点。  相似文献   

2.
FDFCC-Ⅲ装置加工不同性质原料油的技术分析   总被引:1,自引:1,他引:0  
分析了中国石化洛阳分公司FDFCC-Ⅲ装置加工加氢精制蜡油前后的生产运行和生产调整情况。结果表明,重油提升管进料经过加氢精制处理后,性质得到明显改善,硫、氮、重金属等杂质含量大幅度降低;装置产品分布得到改善,干气、焦炭、油浆产率分别降低0.11,2.08,3.65个百分点,轻质油收率、总液体收率分别增加6.34和5.87个百分点;产品质量得到提升,汽油硫质量分数降到0.015%;装置能耗降低657 MJ/t;催化剂单耗降低0.4 kg/t。同时,充分利用汽油提升管改质降硫、降烯烃的作用,生产中通过优化汽油提升管混合进料品种、性质,在停开汽油选择性加氢装置的情况下,改质后汽油质量达到国Ⅲ标准要求,提高了装置整体运行水平。  相似文献   

3.
通过分析汽油中硫的分布及脱硫工艺技术原理。模拟提升管—流化床催化裂化装置反应过程,对流化床操作条件(剂油比、反应温度、空速)和不同的汽油馏程进行了考察,说明了在催化裂化条件下的降硫效果,为催化剂在降低汽油硫含量方面的应用提供了依据。  相似文献   

4.
第三代催化裂化汽油降烯烃催化剂GOR-Ⅲ的研究   总被引:2,自引:0,他引:2  
通过对基质和活性组分进行研究,开发了第三代催化裂化降低汽油烯烃含量催化剂GOR-Ⅲ。对开发的新型基质材料进行分析评价,结果表明,该材料具有双可几孔分布,重油裂化能力强;改性的Y型分子筛提高了水热稳定性;改性的择形分子筛增强了催化剂的芳构化效果。中试制备的催化剂在小型提升管装置上的评价试验结果表明,与GOR-Ⅱ相比,活性稳定性提高,重油裂化能力增强,汽油烯烃含量进一步下降,芳烃含量增加。催化剂工业试生产产品质量稳定。  相似文献   

5.
为降低催化裂化汽油烯烃含量和提高轻质油收率,对0.8 Mt/a重油催化裂化装置进行了采用两段提升管反应器催化裂化技术的改造。改造中除反应沉降器和提升管反应器改动较大外,其余设备改动很小。改造后装置采用了汽油回炼方式。改造后装置的标定结果表明,两段提升管反应器与LBO-16L降烯烃催化剂配合,在保证汽油烯烃体积分数小于35%的前提下,产品分布较好,轻质油收率和柴汽比较高。但是在汽油回炼量较大(20t/h)的情况下,汽油烯烃含量才达到要求。  相似文献   

6.
在分析两段提升管催化裂解多产丙烯工艺特点的基础上研制出两段提升管催化裂解专用LCC-300催化剂。使用LCC-300催化剂,以大庆常压渣油为原料,在单段提升管反应装置上进行模拟两段提升管试验。结果表明,在丙烯收率22.27%的情况下,总液体收率为80.08%,所产汽油的烯烃含量低、芳烃含量高,为高辛烷值汽油调和组分。在TMP工业试验装置上使用配套LCC-300催化剂,一段提升管采用混合C4与大庆常压渣油组合进料,二段提升管为回炼轻汽油、回炼油和回炼油浆组合进料,装置标定结果表明,在丙烯收率20.38%的情况下,总液体收率为82.95%,干气和焦炭收率之和仅为13.99%,说明LCC-300催化剂在多产丙烯、减少干气和焦炭生成方面具有优势。  相似文献   

7.
FCC汽油提升管内降烯烃改质工艺条件的研究   总被引:4,自引:0,他引:4  
利用催化裂化过程本身降低汽油烯烃含量成为近年来新型催化剂和新型工艺技术开发的主要方向,在连续小型提升管装置上,考察FCC汽油降烯烃效果与反应条件的关系。结果表明,采用普通催化裂化催化剂,当汽油烯烃降低15个百分点以上时,轻质油收率超过91%。低温、高剂油比、长反应时间和较低的再生催化剂炭含量有利于汽油烯烃的降低,汽油中C,以上烯烃降烯烃比较容易,C6烯烃有一部分发生反应,而C5烯烃基本不反应。  相似文献   

8.
催化裂化汽油催化改质降烯烃反应规律的试验研究   总被引:11,自引:1,他引:10  
利用催化裂化催化剂在小型提升管催化裂化装置上对催化裂化汽油催化改质降烯烃过程的反应规律进行了试验研究,详细考察了反应温度、剂油比、反应时间、催化剂活性以及催化剂类型对催化裂化汽油改质降烯烃过程的影响。试验结果表明,随着反应温度、剂油比、反应时间以及催化剂活性的增加,改质汽油烯烃含量降低的幅度增加。催化裂化汽油改质后,烯烃含量大幅下降,异构烷烃和芳烃含量有较大幅度的增加,烯烃含量可以降低到汽油新标准的要求,辛烷值基本维持不变,并且汽油收率高,液体收率维持在98.5%以上,(干气 焦炭)产率损失小。  相似文献   

9.
加工中间基原料MIP工艺专用催化剂RMI Ⅱ的开发   总被引:1,自引:1,他引:0  
石油化工科学研究院针对MIP工艺加工中间基原料油,采用较常规REUSY沸石具有更好的重油裂化能力、汽油降烯烃性能以及具有良好焦炭选择性的可接近性改善的AIRY沸石,研制了RMI Ⅱ专用催化剂。实验室评价结果表明,RMI Ⅱ专用催化剂的重油裂化与抗碱氮中毒、汽油降烯烃、增产丙烯等性能均优于常规裂化催化剂。中试放大试验结果表明,RMI Ⅱ专用催化剂中试大样的重油反应性能很好地重复了小试催化剂的结果,并且催化剂的制备易于在国内现有FCC催化剂生产装置上直接实施生产。  相似文献   

10.
以降烯烃催化剂为主催化剂,在中型提升管FCC装置上对稀土FCC助剂(RE-Ⅱ)的反应性能进行评价。结果表明:RE-Ⅱ表现出很高的CO助燃活性,增加了轻质油收率,焦炭和干气产率略有降低;而汽油烯烃含量和辛烷值基本不受影响。  相似文献   

11.
以降烯烃催化剂LBO-16为主催化剂,在提升管反应器中对稀土催化裂化助燃剂RE-Ⅲ反应性能进行了评价。结果表明,在反应温度为500℃,时间为1.95 s,催化剂/原料油(质量比)为5.6,RE-Ⅲ助燃剂用量为3 500×10^-6的条件下,轻质油和总液收率分别增加了1.160,.22个百分点,汽油烯烃体积分数增加了1.85个百分点,转化率和研究法辛烷值变化不大,烟气中一氧化碳体积分数下降3.39个百分点。  相似文献   

12.
介绍了MIP工艺的设计思路及操作要点:一反出口温度控制在500℃~520℃为宜;二反的催化剂藏量控制在4t~5t为宜,如果需打急冷油来控制二反温度,则最好控制在10t/h以内为宜;选用MIP工艺专用催化剂效果更好。总结了MIP—CGP工艺的先进性,表明:在汽油降烯烃方面可控制汽油烯烃在30%以内;在汽油降苯含量方面能够控制汽油苯含量在1.0%以内;在汽油降硫等方面较传统FCC技术可降低硫含量42.69%,各项指标明显优于传统FCC,完全可达到汽油国Ⅲ标准。  相似文献   

13.
《江西石油化工》2004,16(4):44-44
利用裂化催化剂在微反-色谱联合装置、小型固定流化床试验装置和小型提升管催化裂化试验装置上,对催化裂化汽油改质汽油降烯烃过程的产物分布与烯烃含量的降低幅度(烯烃转化率)存在着较好的关联性,说明无论在何种反应条件下采用何种催化剂,只要催化裂化汽油改质后烯烃含量降低,就要付出产生一定量的干气和焦炭的代价。  相似文献   

14.
降低催化裂化汽油烯烃的催化剂 GOR-Q 评价试验   总被引:4,自引:1,他引:3  
在小型提升管催化裂化试验装置上,参照胜利炼油厂催化裂化装置的工艺条件,对新型降烯烃催化剂GOR-Q与该厂原用的ZC-7000催化剂进行对比评价试验。结果表明:采用GOR-Q催化剂所得汽油烯烃含量比采用ZC-7000催化剂降低约12个百分点,有望 在工业装置使用后满足清洁燃料对烯烃含量的要求。  相似文献   

15.
两段提升管催化裂化工艺是用串联的两段提升管反应器取代原有的FCC提升管反应器,构成新的反应再生系统流程,因此克服了原FCC工艺的反应器稳定时间长的缺点。该技术的特点在于反应油气二次接触新鲜催化剂,接触时间短且分段时间反应,因此有效地提高了提升管中催化剂的平均活性和选择性,有效地抑制了热裂化及不利的二次反应,在提高转化率,汽油和轻油收率的同时,大幅度降低了催化汽油中烯烃的含量,增加了异构烷烃和芳烃含量,提高了汽油的辛烷值。  相似文献   

16.
中国石化青岛石油化工公司采用多产异构烷烃-清洁汽油增产丙烯工艺(MIP-CGP),对1.0 Mt/a重油催化裂化装置进行技术改造。通过对提升管反应器的改造,增加第二反应区,同时采用专用CGP催化剂,控制裂化深度,实现降烯烃并兼顾增产液化气和丙烯的效果。结果表明,改造后液化气质量分数提高了4.36个百分点,干气质量分数下降了约1个百分点,总液收率提高了0.86个百分点;改造后汽油含硫质量分数下降了0.012个百分点,烯烃体积分数下降了14.3个百分点,诱导期延长了587 min,但柴油质量变差。经估算,改造后比改造前可增加效益12 708万元/a。  相似文献   

17.
MIP工艺技术专用催化剂CR022的工业应用   总被引:2,自引:2,他引:0  
在中国石化股份有限公司高桥分公司MIP工业装置上进行了MIP工艺技术专用催化剂CR022的工业应用试验。试验结果表明,MIP工艺专用催化剂CR022具有进一步降低FCC汽油烯烃的特性。与原使用的MLC-500催化剂相比,当CR022催化剂占系统藏量64%时汽油烯烃体积分数下降5.7个百分点,芳烃体积分数增加5.1个百分点。在降低汽油烯烃的同时,汽油的研究法辛烷值和马达法辛烷值略有增加,但汽油产率下降了1.45个百分点。  相似文献   

18.
分析对比了MIP-CGP工艺与辅助提升管工艺对汽油的改质效果。结果表明,辅助提升管控制汽油烯烃含量较为灵活,且降烯烃效果显著;MIP-CGP工艺有利于提高汽油的辛烷值;采用MIP-CGP工艺液化石油气(LPG)及丙烯收率均较高,改质后,LPG中的丙烯质量分数可增加5.21个百分点,丙烯收率达到7.058%。  相似文献   

19.
FDFCC工艺中汽油提升管催化裂化反应动力学模型研究   总被引:3,自引:1,他引:2  
利用中国石化长岭分公司1号催化裂化装置实测数据,采用集总理论研究FDFCC工艺汽油提升管内的催化反应行为。根据集总原则,将汽油提升管内反应系统的原料和产品按馏程及烃族组成划分为九个集总组分,通过合理简化反应网络,建立九集总反应动力学模型,并求取25组反应动力学参数,并对不同性质原料在不同操作条件下的产品分布进行验证。结果表明,该模型能较好预测汽油产品组成及液化气中高附加值的丙烯产率。对FDFCC模型的进一步开发研究和FDFCC工艺的汽油降烯烃生产具有一定的指导意义。  相似文献   

20.
催化裂化操作参数对降低汽油烯烃含量的影响   总被引:20,自引:6,他引:14  
针对催化裂化汽油烯烃含量较高的情况,在中型提升管催化裂化装置上,考察了原料油性质、催化剂性质、反应条件、汽油馏程等对汽油烯烃含量的影响,提出了工业生产装置降低催化裂化汽油烯烃含量的措施。研究发现,催化裂化汽油烯烃含量与氢转移指数(异丁烷/丁烯及异丁烷/异丁烯)呈线性关系,氢含量高、K值大的原料油,汽油烯烃含量较高。使用降烯烃催化剂、提高催化剂活性、提高剂油比、降低反应温度、延长反应时间、提高烃分压、提高汽油终馏点等有利于降低催化裂化汽油烯烃含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号