首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   39篇
  国内免费   1篇
工业技术   688篇
  2023年   8篇
  2022年   2篇
  2021年   16篇
  2020年   9篇
  2019年   10篇
  2018年   26篇
  2017年   10篇
  2016年   28篇
  2015年   22篇
  2014年   31篇
  2013年   28篇
  2012年   51篇
  2011年   66篇
  2010年   41篇
  2009年   42篇
  2008年   38篇
  2007年   32篇
  2006年   25篇
  2005年   17篇
  2004年   21篇
  2003年   22篇
  2002年   23篇
  2001年   9篇
  2000年   10篇
  1999年   5篇
  1998年   9篇
  1997年   7篇
  1995年   6篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1985年   2篇
  1984年   3篇
  1970年   2篇
  1965年   1篇
  1963年   1篇
  1962年   3篇
  1961年   2篇
  1960年   2篇
  1958年   1篇
  1957年   2篇
  1956年   4篇
  1955年   3篇
  1954年   2篇
  1953年   1篇
排序方式: 共有688条查询结果,搜索用时 15 毫秒
1.
GMP synthetase catalyses the conversion of XMP to GMP through a series of reactions that include hydrolysis of Gln to generate ammonia in the glutamine amidotransferase (GATase) domain, activation of XMP to adenyl-XMP intermediate in the ATP pyrophosphatase (ATPPase) domain and reaction of ammonia with the intermediate to generate GMP. The functioning of GMP synthetases entails bidirectional domain crosstalk, which leads to allosteric activation of the GATase domain, synchronization of catalytic events and tunnelling of ammonia. Herein, we have taken recourse to the analysis of structures of GMP synthetases, site-directed mutagenesis and steady-state and transient kinetics on the Plasmodium falciparum enzyme to decipher the molecular basis of catalysis in the ATPPase domain and domain crosstalk. Our results suggest an arrangement at the interdomain interface, of helices with residues that play roles in ATPPase catalysis as well as domain crosstalk enabling the coupling of ATPPase catalysis with GATase activation. Overall, the study enhances our understanding of GMP synthetases, which are drug targets in many infectious pathogens.  相似文献   
2.
3.
4.
Li2O-Al2O3-SiO2 (LAS) glass-ceramics have important industrial applications and bulk nucleation is usually achieved by using nucleating agents. In particular, P2O5 is an efficient agent in glasses containing a low level of Al2O3 but its role in the first stages of nucleation is not well established. In this study, we combine structural investigations from local to mesoscales to describe the structural evolution during crystallization of LAS glass-ceramics. Local environment is probed using 29Si and 31P MAS-NMR, indicating organization of P in poorly crystallized Li3PO4 species prior to any crystallization. To better understand the detailed nanoscale changes of the glass structure, 31P-31P DQ-DRENAR homonuclear correlation experiments have been carried out, revealing the gradual segregation of P atoms associated with the formation of disordered Li3PO4. Small-angle neutron scattering data also show the apparition of nanoscale heterogeneities associated with Li3PO4 species upon heating treatments and allow the determination of their average sizes. These new structural information enhance our understanding of the role of P in nucleation mechanisms. Nucleation is initiated by gradual change in P environment implying P segregation upon heating treatments, forming disordered Li3PO4 heterogeneities. The segregation of P atoms enables the precipitation of meta- and disilicate phases.  相似文献   
5.
Influence of the character of NOM on the ozonation of MIB and geosmin   总被引:10,自引:0,他引:10  
Ho L  Newcombe G  Croué JP 《Water research》2002,36(3):511-518
Tastes and odours (T&Os) are a major concern in drinking water as they are not efficiently removed by conventional water treatment. Ozonation has been effective for their destruction in some studies. However, the natural organic matter (NOM) in waters can affect the ozonation process and subsequently affect the destruction of T&Os. Five NOM fractions were isolated and ozonated in synthetic waters. The fraction containing the more highly coloured, higher molecular weight compounds exhibited the highest ozone (O3) demand, whereas the low aromatic fraction exhibited the lowest O3 demand. The character of the NOM fractions influenced the ozonation of MIB and geosmin. The destruction of MIB and geosmin was significantly higher in the fraction with the highest colour and UV/visible absorbance at all O3 doses. The destruction of the compounds in the other fractions showed the same trends, increasing MIB and geosmin destruction with increasing UV/visible absorbing character of the NOM. MIB was also ozonated in two real waters. with results showing a competing effect between NOM concentration and NOM character. The O3 reaction time was shown to be important for the destruction of both compounds.  相似文献   
6.
We report on the morphology evolution during heating and melting of lamellar poly(isoprene)-block-poly(ferrocenyldimethylsilane) (PI76-b-PFDMS76) raft crystals deposited at the native oxide surface of silicon (SiO2) or at a highly ordered pyrolytic graphite (HOPG) surface, studied by in situ temperature controlled atomic force microscopy. Crystals deposited on hydrophilic SiO2 surfaces revealed an irreversible decrease in length at temperatures of up to tens of degrees above their expected melting temperature, while maintaining their platelet-like structure. Crystals deposited on hydrophobic HOPG surfaces initially decreased in length below their expected melting temperature, while at 120 °C and above a typical molten morphology was observed. In addition, the irreversible formation of a PI76-b-PFDMS76 wetting layer around the crystals was observed upon increasing the temperature. These observations in the morphological behavior upon heating emphasize the role of interfacial energy between a surface deposited block copolymer based macromolecular nanostructure and its supporting substrate.  相似文献   
7.
The pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process is currently sent to the recovery boiler and incinerated. However, PHL contains about 5–8% lignocelluloses that can be utilized in the production of value-added chemicals. In this study, a process for producing xylitol from hemicelluloses in PHL is developed. This process involves several acidification, neutralization, adsorption (along with reactivation) and evaporation stages. The mass balance indicates that 533 kg/h xylitol (with 99% purity), 187 kg/h lignin, 806 kg/h basic ferric acetate, and 1600 kg/h gypsum can be produced from 41,670 kg/h PHL. The energy balance shows that the evaporators are the largest consumers of energy, while the reactivation kiln, acidification, neutralization, and precipitation processes generate some heat. Overall, 41% conversion of xylose to xylitol is achieved.  相似文献   
8.
Given the unsurpassed sound sensitivity of mosquitoes among arthropods and the sound source power required for long-range hearing, we investigated the distance over which female mosquitoes detect species-specific cues in the sound of station-keeping mating swarms. A common misunderstanding, that mosquitoes cannot hear at long range because their hearing organs are ‘particle-velocity’ receptors, has clouded the fact that particle velocity is an intrinsic component of sound whatever the distance to the sound source. We exposed free-flying Anopheles coluzzii females to pre-recorded sounds of male An. coluzzii and An. gambiae s.s. swarms over a range of natural sound levels. Sound levels tested were related to equivalent distances between the female and the swarm for a given number of males, enabling us to infer distances over which females might hear large male swarms. We show that females do not respond to swarm sound up to 48 dB sound pressure level (SPL) and that louder SPLs are not ecologically relevant for a swarm. Considering that swarms are the only mosquito sound source that would be loud enough to be heard at long range, we conclude that inter-mosquito acoustic communication is restricted to close-range pair interactions. We also showed that the sensitivity to sound in free-flying males is much enhanced compared to that of tethered ones.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号