首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  国内免费   1篇
  完全免费   2篇
工业技术   7篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
为克服人工蜂群算法在求解函数优化问题时存在收敛精度低、收敛速度慢的缺点,提出一种改进的人工蜂群算法。为提高人工蜂群算法的局部搜索能力和避免早熟收敛,跟随蜂在当前最优解的周围进行局部搜索,并随着迭代次数的增加,逐渐缩小侦查蜂在当前最优解周围的局部搜索范围。通过6个标准测试函数完成仿真实验,结果表明,与基本人工蜂群算法相比,改进算法在寻优精度和收敛速度上均得到提高。  相似文献   
2.
针对人工蜂群算法在函数优化问题求解过程中容易陷入局部最优,收敛速度慢的缺点,提出了一种基于改进局部搜索策略的人工蜂群算法。该算法中跟随蜂采用基于当前最优解的混沌局部搜索策略,侦查蜂采用基于当前最优解的自适应侦查策略,并使其局部搜索范围随着迭代次数的增加逐渐减小,从而提高了人工蜂群算法的局部搜索能力,有效地避免了其陷入局部最优。6个测试函数的仿真实验结果表明,与传统的人工蜂群算法相比,改进后算法的求解精度和收敛速度明显提升。  相似文献   
3.
标准人工蜂群算法由于局部搜索能力差,收敛精度低,容易陷入早熟收敛等缺陷,从而求解最小值函数优化问题的能力受到限制。为了解决标准人工蜂群算法的以上问题,提出了一种改进的人工蜂群算法。该算法将混沌算子引入雇佣蜂和跟随蜂基于当前最优解的局部搜索策略中,并赋予跟随蜂细菌的趋药性,从而
  提高了人工蜂群算法的局部搜索能力。在6个测试函数上的仿真结果表明,该算法能有效地避免陷入局部最优,并使收敛精度得到显著提高。  相似文献   
4.
为了解决人工蜂群(ABC)算法在用于函数优化时所具有的局部探索能力不强、收敛精度不高的问题,提出一种基于中心解的人工蜂群算法。该算法结合中心解和当前最优候选解的优点,并将中心解引入到跟随蜂的局部变异策略中。跟随蜂采用轮盘赌的形式,选择某些适应度值较好的蜜源,在雇佣蜂中心解的基础上深度局部寻优,并在每次迭代中逐维更新蜜源每一维度的值。为了验证该算法的有效性,选择六个基准测试函数对三种算法进行仿真对比实验。与标准ABC算法和Best-so-far ABC算法相比,改进的ABC算法的求解精度有较大幅度提高,特别是对于Rastrigin函数,两种不同维数下均达到了理论最优值。实验结果表明:所提算法在收敛速度和寻优精度上都有明显改善。  相似文献   
5.
针对传统的人工蜂群算法在求解函数优化问题中具有收敛速度慢、局部搜索能力低的缺点,将量子粒子群优化算法中粒子位移的更新方法引入到跟随蜂的局部搜索策略中,使人工蜂群具有更高的局部搜索能力.6个标准测试函数的仿真实验结果表明:与传统的人工蜂群算法相比,改进后的人工蜂群算法在收敛速度和寻优精度上大幅提高.  相似文献   
6.
毛力  周长喜  吴滨 《计算机科学》2015,42(12):263-267
为了克服人工蜂群算法在求解函数优化问题中所存在的局部搜索能力差、收敛精度低的缺点,提出了一种基于当前最优解的分段搜索策略的人工蜂群算法。该算法中跟随蜂利用由全局当前最优解和个体当前最优解引导的局部搜索策略逐维进行变异,并采用基于“分段思想”的局部搜索策略对蜜源进行贪婪更新,以提高蜜源的更新效率,从而提高了人工蜂群算法的局部搜索能力。6个标准测试函数的仿真实验结果表明,与基本人工蜂群算法相比,改进后的人工蜂群算法在寻优精度和收敛速度上均有明显提高。  相似文献   
7.
孙辉  谢海华  赵嘉  邓志诚 《控制与决策》2019,34(10):2115-2124
针对人工蜂群算法收敛速度慢、局部搜索能力差等缺点,提出一种新的改进人工蜂群算法.新算法依据蜜源适应值进行排序,将排序结果作为权值,构造一个虚拟蜜源,即加权中心.若加权中心优于当前最优解,则取代当前最优解,以便得到更好的当前最优解.在加权中心的基础上,增加全维搜索策略,以改善算法的局部搜索能力.两种策略的应用能够加快算法的收敛速度,增强局部搜索能力.在经典的22个基准测试函数上,对新算法的有效性进行实验仿真分析,实验结果表明,所提出算法在求解精度和速度上均有显著提高,在给定等同的时间下远高于其他算法.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号