首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1127篇
  免费   59篇
  国内免费   115篇
工业技术   1301篇
  2023年   62篇
  2022年   92篇
  2021年   86篇
  2020年   128篇
  2019年   97篇
  2018年   117篇
  2017年   125篇
  2016年   72篇
  2015年   23篇
  2014年   61篇
  2013年   48篇
  2012年   35篇
  2011年   76篇
  2010年   41篇
  2009年   35篇
  2008年   18篇
  2007年   22篇
  2006年   16篇
  2005年   23篇
  2004年   13篇
  2003年   18篇
  2002年   10篇
  2001年   13篇
  2000年   7篇
  1999年   7篇
  1998年   15篇
  1997年   13篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1979年   1篇
排序方式: 共有1301条查询结果,搜索用时 15 毫秒
81.
结合电信增值业务领域中对大数据处理的实际需求,对现有主流的分布式大数据处理架构(Hive、Impala、Spark)的核心进行分析与实测,比较它们在大数据处理过程中的优劣及适用的场景,从而为大数据分析所面临的架构适用性选型提供参考.  相似文献   
82.
Biofuels are set to play an important role in the future strategy of automotive fuel suppliers, and therefore the study of using alcohols in spark ignition engines has become a necessity. A simple thermodynamic model was developed for calculating air–fuel mixture parameters for port injection engines fueled with gasoline–isobutanol blends, and theoretical results were compared to experimental values. For simulating the evaporation process, gasoline was considered a mixture of four components, with isobutanol added in different proportions. As all engine components are at ambient temperature during cold starts, mixture formation was considered an adiabatic process, with the fuel breaking up into droplets and evaporating, thus resulting in a temperature drop. A port injection engine fitted to a passenger car was used to validate the model for calculating air–fuel mixture parameters.  相似文献   
83.
By adding a small amount of tungsten carbide (WC) as sintering aids, nearly fully dense TiC ceramics were obtained by spark plasma sintering at 1450–1600 °C. The results show that the densification temperature of TiC ceramic was significantly decreased with the addition of 3.5 wt% WC. Compared with the monolithic TiC, the densification temperature of TiC–3.5 wt% WC is lower by ~150 °C and no deterioration of mechanical properties is observed. The TiC composite sintered at 1600 °C exhibits full density, a Vickers hardness of 28.2 ± 1.2 MPa, a flexural strength of 599.5 ± 34.7 MPa and a fracture toughness of 6.3 ± 1.4 MPa m1/2.  相似文献   
84.
We report the synthesis of a new class of Al2O3–WC nanocomposites for the first time by using metal–organic chemical vapor deposition process in a spouted bed followed by spark plasma sintering technique. The microstructure and mechanical properties of these prepared nanocomposites have been analyzed for various sintering parameters. From microstructure observation, it is found that the nanosized WC particles are dispersed within alumina matrix grains and intergrains. The microstructure of transgranular and step-wise fracture surface are found in these nanocomposites. The basic mechanical properties like density, hardness, and toughness also have been analyzed and the results are interpreted by correlating with that of corresponding microstructures.  相似文献   
85.
《应用陶瓷进展》2013,112(4):251-256
Abstract

Densification is an exothermic process according to the classical sintering theories; however, it has never been explored experimentally. In the present work, such heat release was successfully detected from nanosized BaTiO3 nanopowder compact, which was rapidly consolidated by spark plasma sintering. A reduction of total power consumption was observed immediately when rapid densification occurred. The effects of the deviation of overall electric resistance on total power consumption were analysed. The temperature at which a falling inflection point of the power supply was observed can be used as an indicator of the minimum temperature required for densification. This would be of help for defining the ‘kinetic window’ for processing of nanoceramics in sintering practice.  相似文献   
86.
Pure molybdenum was sintered with SPS under various temperatures, external pressures and heating rates. The microstructure of the specimens representing the different sintering conditions was investigated by classical metallographic methods. The relative density, the microhardness and the chord length distribution were measured. Linear shrinkage, depending on time or temperature, was calculated from piston travel, which was recorded during sintering process. These results show that the main part of consolidation takes place during fast heating up. The densification behaviour is controlled mainly by sintering temperatures and applied pressure. The molybdenum powder was successfully consolidated by SPS in very short times. A relative density of 95% was reached by sintering temperatures of 1600 °C and external pressure of 67 MPa.  相似文献   
87.
Measurement of the cement powder composition as a major building material is considered very important. In this paper the capabilities of Spark Induced Breakdown Spectroscopy (SIBS) as a new technique for analysis of cement powder are shown. The major and minor elements of cement such as Ca, Si, Fe, K, Mg, Al, Na, Ba, Ti, V, Pb, Mn and Sr are detected qualitatively. For quantitative measurement, calibration curves are prepared for elements Ca, Si, Mg, Al, Fe and K with limit of detection below 220 ppm. The critical problems such as how to achieve quantitative measurement and improve the detection limits are investigated. The potential and drawbacks of SIBS technique in comparison with XRF for analysis of powder products are discussed.  相似文献   
88.
《应用陶瓷进展》2013,112(4):240-247
Abstract

Abstract

The structural and chemical stability of multiwall carbon nanotubes (MWNTs) in ceramic nanocomposites prepared by spark plasma sintering was studied. High resolution electron microscopy, X-ray diffraction and Raman spectroscopy were used to evaluate any degradation of the MWNTs. They were found to be well preserved in alumina after sintering up to 1900°C/100?MPa/3?min. In boron carbide, structural degradation of MWNTs started from ~1600°C when sintered for 20?min. Multiwall carbon nanotubes maintained their high aspect ratio and fibrous nature even after being sintered in boron carbide at 2000°C for 20?min. However, no Raman vibrations of MWNTs were observed for nanocomposites processed at temperatures <2000°C, which indicates that they were severely degraded. Structural preservation of MWNTs in ceramic nanocomposites depends on the ceramic matrix, sintering temperature and dwell time. Multiwall carbon nanotubes were not preserved for matrices that require high sintering temperatures (>1600°C) and longer processing times (>13?min).  相似文献   
89.
90.
The heat of combustion of two distinctly synthesized stoichiometric tantalum-tungsten oxide energetic composites was investigated by bomb calorimetry. One composite was synthesized using a sol-gel (SG) derived method in which micrometric-scale tantalum is immobilized in a tungsten oxide three-dimensional nanostructured network structure. The second energetic composite was made from the mixing of micrometric-scale tantalum and commercially available (CA) nanometric tungsten oxide powders. The energetic composites were consolidated using the spark plasma sintering (SPS) technique under a 300 MPa pressure and at temperatures of 25, 400, and 500 °C. For samples consolidated at 25 °C, the density of the CA composite is 61.65 ± 1.07% in comparison to 56.41 ± 1.19% for the SG derived composite. In contrast, the resulting densities of the SG composite are higher than the CA composite for samples consolidated at 400 and 500 °C. The theoretical maximum density for the SG composite consolidated to 400 and 500 °C are 81.30 ± 0.58% and 84.42 ± 0.62%, respectively. The theoretical maximum density of the CA composite consolidated to 400 and 500 °C are 74.54 ± 0.80% and 77.90 ± 0.79%, respectively. X-ray diffraction analyses showed an increase of pre-reaction of the constituents with an increase in the consolidation temperature. The increase in pre-reaction results in lower stored energy content for samples consolidated to 400 and 500 °C in comparison to samples consolidated at 25 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号