首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
基于IMU旋转的捷联惯导系统自补偿方法   总被引:11,自引:7,他引:4  
为了有效地抑制惯性器件常值偏差对惯导系统导航精度的影响,提出了基于惯性测量单元(inertial measurement unit,IMU)旋转的自动补偿方法.由于旋转的引入,IMU中陀螺仪和加速度计的常值偏差被调制成正弦信号,通过积分运算可以有效地消除常值偏差对惯导系统导航精度的影响.在分析单、双轴旋转补偿原理的基础上,提出一种改进的单轴旋转调制方法并对该方法进行了理论证明和实验分析.与以往的单轴旋转方式及未采用旋转方式时的导航误差进行了比较,结果表明该方案可以消除所有方向上惯性器件常值偏差的影响,有效地提高系统的定位精度.  相似文献   

2.
摇摆基座下旋转捷联系统粗对准技术研究   总被引:10,自引:6,他引:4  
阐述了利用惯性测量单元(inertial measurement unit, IMU)的转动调制惯性器件常值偏差的原理.针对载体处于摇摆基座下难以实现粗对准这一问题,在已有惯性系对准方法的基础上提出了改进的惯性系对准方案并应用于旋转捷联惯导系统中.利用数字低通滤波器滤除由于摇摆和振荡运动产生的加速度干扰,实现了旋转捷联系统的粗对准.对比地分析了2种惯性系下的粗对准原理并进行了仿真,利用系泊实验进一步验证了改进的惯性系对准方案的可行性.结果表明,载体处于摇摆状态时,采用低通滤波方法可以有效地提取基座惯性系下的重力加速度信息,并建立更为准确的捷联矩阵;与传统的惯性系对准方法相比较可以看出,采用滤波技术的惯性系对准结果具有更好的稳定性,存在广阔的应用前景.  相似文献   

3.
针对惯性测量单元(inertial measurement unit,IMU)旋转角速度变化过程对旋转调制型捷联系统(strapdown inertial nav-igation system,SINS)定位精度的影响进行分析和研究。例举IMU旋转方式并分析旋转自补偿技术调制惯性器件偏差的基本原理;详细推导了IMU运动状态变化过程对调制型捷联系统导航精度的影响并分析了IMU正反转方案的误差特性,最后根据仿真分析确定旋转角速度的选取依据。在理论分析的基础上进行了仿真实验。结果表明,IMU的旋转运动可以有效地调制惯性器件部分偏差,但是旋转角速度的大小及角速度变化过程依然会对调制型捷联系统的定位精度产生影响。  相似文献   

4.
单轴旋转式捷联惯导方位对准研究   总被引:2,自引:1,他引:1  
为消除东向陀螺常值漂移对捷联惯导方位对准精度的影响,在罗经法对准频率特性分析的基础上提出了一种适于旋转调制捷联惯导系统的罗经对准方法.该方法利用旋转过程中陀螺漂移和加速度计零偏被调制为周期变量的特点,针对旋转频率来改变罗经法对准系统的参数,使系统能够对调制后的陀螺漂移和加速度计零偏产生抑制作用,以此消除静基座对准中由东向陀螺常值漂移所引起的方位误差角.仿真实验结果表明,相比静基座对准,在单轴旋转中采用此种罗经法对准可以消除方位角的常值误差,方位对准的精度可提高至10倍以上.  相似文献   

5.
捷联惯导系统误差模型与仿真分析   总被引:1,自引:0,他引:1  
为研究捷联惯导系统短时间导航精度,建立了导航误差数学模型,分析了惯性器件误差对系统导航精度的影响。应用捷联惯性导航原理,针对系统短时间导航的特点,简化载体在导航坐标系的导航方程;由惯性器件安装误差与陀螺仪等效零漂经过方向余弦矩阵变换建立载体姿态误差方程;结合导航方程、姿态误差方程与惯性器件误差推导出载体速度误差与位置误差数学模型。在此基础上,建立了误差状态空间方程与误差模型框图。在Matlab/Simulink环境下建立了误差数学模型计算模块,用捷联惯导算法与误差模型共同解算地面150秒导航试验数据,结果表明:导航系X轴的相对系统误差小于20%,Y轴、Z轴的相对系统误差小于5%,验证了误差数学模型的正确性。此外,分析了加速度计精度的变化对短时间工作的捷联惯导系统导航误差产生基本的影响。  相似文献   

6.
为研究捷联惯导系统短时间导航精度,建立了导航误差数学模型,分析了惯性器件误差对系统导航精度的影响.应用捷联惯性导航原理,针对系统短时间导航的特点,简化了载体在导航坐标系的导航方程;由惯性器件安装误差与陀螺仪等效零漂经过方向余弦矩阵变换建立载体姿态误差方程;结合导航方程、姿态误差方程与惯性器件误差推导出载体速度误差与位置误差数学模型.在此基础上,建立了误差状态空间方程与误差模型框图.在Matlab/Simulink环境下建立了误差数学模型计算模块,用捷联惯导算法与误差模型共同解算地面150 s导航试验数据.结果表明:导航系X轴的相对系统误差<20%,Y轴、Z轴的相对系统误差<4%,验证了误差数学模型的正确性.此外,分析了加速度计精度的变化对短时间工作的捷联惯导系统导航误差产生的基本影响.  相似文献   

7.
无外界基准信息时,针对舰艇单、双轴旋转调制激光陀螺航海惯导冗余配置情况下双轴旋转惯导间性能的在线评估问题,提出了联合旋转调制激光陀螺航海惯导相对性能的在线评估方法。一套单轴旋转惯导分别与待评估的双轴旋转惯导构建联合误差状态卡尔曼滤波器,状态为各系统位置误差、速度误差、姿态误差的差值及各自的陀螺漂移、加速度计零偏,以系统间的位置、速度差值为观测量,通过联合旋转调制策略编排改变系统间的相对姿态,可观性分析表明,包括单轴旋转惯导方位陀螺漂移在内的所有状态均完全可观;以不同滤波器估计得到的单轴旋转惯导方位陀螺漂移估计值的标准差为评价指标,对双轴旋转惯导随机误差进行在线评估。半实物仿真和实际实验结果表明:双轴旋转惯导激光陀螺随机误差差异的区分度可达10%;144h(6天)导航时间内,以单轴旋转惯导方位陀螺漂移估计值的标准差为评价指标,可以实现不同双轴旋转惯导相对性能的在线评估。该方法为旋转调制激光陀螺航海惯导冗余配置情况下的系统优选提供了理论依据。  相似文献   

8.
旋转调制式激光捷联惯导安装误差分析与标定   总被引:1,自引:1,他引:0  
双轴旋转调制技术可以实现对陀螺漂移和加计零偏的调制,从而极大地提高惯导系统的精度,以满足船用惯导高精度的导航需求.由于单元体一直作连续正反旋转运动,传统的位置法和速率法无法对该系统进行标定.提出了一种基于三轴转台和单元体自旋转的误差标定方案,实现了对系统误差的快速精确标定.其中旋转轴和陀螺及加计敏感轴间的不正交角标定精度优于1",陀螺、加计敏感轴间的不正交角标定精度优于2".海上试验表明,误差标定结果满足了系统1 nmile/24 h的导航要求,具有较高的工程应用价值.  相似文献   

9.
单轴旋转惯导系统载体航向隔离方法研究   总被引:2,自引:0,他引:2  
有规律地旋转惯性测量单元(inertial measurement unit,IMU)可将惯性器件的慢变误差在导航系中调制成周期性变化的信号,通过积分运算抑制器件该类误差,有效提高惯性导航系统长时间导航精度。基于IMU的测量误差模型,分析了旋转调制技术(rotation modulation technique,RMT)的基本原理和载体航向运动对旋转调制效果的影响。针对载体航向运动降低旋转调制补偿效果这一问题,提出了一种基于载体姿态解算驱动IMU转台的方法,并对该方法进行了理论分析和数学仿真。理论分析和仿真结果表明:该方法可以有效抑制载体航向运动对旋转调制效果的影响。  相似文献   

10.
单轴旋转惯导系统建模与仿真   总被引:1,自引:0,他引:1  
建立了单轴旋转式捷联惯导系统数学模型和仿真模型,采用的导航算法能有效避免转台测角误差对系统定位精度造成的影响;仿真结果表明旋转IMU能提高抑制惯导定位误差的累积,提高惯导定位精度、姿态精度和速度精度也同时得到提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号