首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
As per the Montreal Protocol, CFCs and HCFCs are being phased out. HCFC-22 is used in window air conditioners. This paper presents the experimental performance study of a window air conditioner with propane (HC-290), a natural refrigerant, as a drop-in substitute to HCFC-22. Experimental results showed that HC-290 had 6.6% lower cooling capacity for the lower operating conditions and 9.7% lower for the higher operating conditions with respect to HCFC-22. The coefficient of performance for HC-290 was 7.9% higher for the lower operating conditions and 2.8% higher for the higher operating conditions. The energy consumption of the unit with HC-290 was lower in the range 12.4–13.5% than HCFC-22. The discharge pressures for HC-290 were lower in the range 13.7–18.2% than HCFC-22. For HC-290, the pressure drop was lower than HCFC-22 in both heat exchangers.This paper also presents simulation results for the heat exchangers of an HCFC-22 window air conditioner with HC-290 as a drop-in substitute. The simulation has been carried out using EVAP-COND, a heat exchanger model developed by NIST [National Institute of Standards and Technology. EVAP-COND: simulation models for finned-tube heat exchangers, Maryland, USA (2003). http://www2.bfrl.nist.gov/software/evap-cond/ [18]]. The simulated evaporator capacities are within ±4% of the experimentally measured cooling capacities for both refrigerants. Simulation results for HC-290 and HCFC-22 are compared. The exit temperatures of HC-290 are lower by 0.3–1.2 °C in the condenser and are higher by 2.1–2.4 °C in the evaporator than HCFC-22. Evaporating pressures of HC-290 are lower by 2.1–3.3% as compared to HCFC-22. The pressure drops of HC-290 are lower in both the evaporator and the condenser as compared to HCFC-22. The outlet temperatures of air for HCFC-22 and HC-290 in both heat exchangers are nearly the same.  相似文献   

2.
Discussion of the feasibility of the Einstein refrigeration cycle   总被引:4,自引:0,他引:4  
A careful modelling of the thermodynamic properties of the water–ammonia–butane system, the working fluid mixture used in the Einstein cycle, with the Patel–Teja cubic equation of state is performed. Numerical simulation is used to investigate the feasibility limits of this refrigeration cycle. Two modified configurations of the cycle are considered. A conflict between the evaporator and the condenser/absorber operating conditions is noted. The condenser/absorber operation needs a higher system pressure, which limits the refrigeration temperature in the case of air-cooling. On the other hand, the condensation of ammonia and the presence of a small quantity of water in the evaporator limit also the refrigeration temperature. In the case of a water-cooled machine, with a condenser/absorber temperature of 30 °C, the cycle COP reaches 0.19 which is still low.  相似文献   

3.
In this study, computer simulation programs were developed for multi-stage condensation heat pumps and their performance was examined for CFC11, HCFC123, HCFC141b under the same condition. The results showed that the coefficient of performance (COP) of an optimized ‘non-split type’ three-stage condensation heat pump was 25–42% higher than that of a conventional single-stage heat pump. The increase in COP differed among the fluids examined. The improvement in COP was due largely to the decrease in average temperature difference between the refrigerant and water in the condensers, which resulted in a decrease in thermodynamic irreversibility. For the three-stage heat pump, the highest COP was achieved when the total condenser area was evenly distributed to the three condensers. For the two-stage heat pump, however, the optimum distribution of total condenser area varied with working fluids. For the three-stage system, splitting the condenser cooling water for the use of intermediate and high pressure subcoolers helped increase the COP further. When the individual cooling water for the intermediate and high pressure subcoolers was roughly 10% of the total condenser cooling water, the optimum COP was achieved showing an additional 11% increase in COP as compared to that of the ‘non-split type’ for the three-stage heat pump system.  相似文献   

4.
A novel silica gel–water adsorption chiller is designed and its performance is predicted in this work. This adsorption chiller includes three vacuum chambers: two adsorption/desorption (or evaporation/condensation) vacuum chambers and one heat pipe working vacuum chamber as the evaporator. One adsorber, one condenser and one evaporator are housed in the same chamber to constitute an adsorption/desorption unit. The evaporators of two adsorption/desorption units are combined together by a heat-pipe heat exchanger to make continuous refrigerating capacity. In this chiller, a vacuum valve is installed between the two adsorption/desorption vacuum chambers to increase its performance especially when the chiller is driven by a low temperature heat source. The operating reliability of the chiller rises greatly because of using fewer valves. Furthermore, the performance of the chiller is predicted. The simulated results show that the refrigerating capacity is more than 10 kW under a typical working condition with hot water temperature of 85 °C, the cooling water temperature of 31 °C and the chilled water inlet temperature of 15 °C. The COP exceeds 0.5 even under a heat source temperature of 65 °C.  相似文献   

5.
In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R152a, R290 (propane) and R1270 (propylene) were tested in a breadboard heat pump in an attempt to substitute HCFC22 used in residential air-conditioners. The heat pump was of 3.5 kW capacity with water as the heat transfer fluid (HTF) in the evaporator and condenser that are in a counter current flow configuration. All tests were conducted with the HTF temperatures fixed to those found in the ARI test A condition. Test results show that ternary mixtures composed of R32, R125, and R134a have a 4–5% higher coefficient of performance (COP) and capacity than HCFC22. On the other hand, ternary mixtures containing R125, R134a and R152a have both lower COPs and capacities than HCFC22. R32/R134a binary mixtures show a 7% increase in COP with the similar capacity to that of HCFC22 while R290/R134a azeotrope shows a 3–4% increases in both COP and capacity. The compressor discharge temperatures of the mixtures tested are much lower than those of HCFC22, indicating that these mixtures would offer better system reliability and longer life time than HCFC22. Finally, test results with a suction line heat exchanger (SLHX) indicate that SLHX must be used with special care in air-conditioners since its effect is fluid dependent.  相似文献   

6.
This paper presents an experimental study on the performance of hydrocarbon refrigerants, namely propane and a liquefied petroleum gas (LPG) mix as suitable replacements for the widely used refrigerant HCFC22 in refrigeration and heat pump applications. A cylinder of commercially available LPG from New Zealand market was obtained for this study. The composition of the specific LPG mix (by mass fraction) was propane (HC290)—98.95%, ethane (HC170)—1.007%, iso-butane (HC600a)—0.0397% and other constituents in small proportions. Experiments were carried out in a laboratory heat pump test facility with maximum condenser capacity of approximately 15 kW. Condensing temperatures were held constant at 35, 45 and 55°C, while evaporating temperatures were varied over a wide range from − 15 to + 15°C. All tests were carried out at constant degree of superheat (about 1 K) and subcooling (about 8 K). All appropriate precautions were observed against any leaks or fire.The analysis revealed that the hydrocarbon refrigerants performed better than HCFC22 but with a small loss of condenser capacity. The mass flow rate and compressor discharge temperature were found to be significantly lower than HCFC22. The performance of the specific LPG mix tested was found to be better than HC290 at higher condensing temperatures but poorer at a lower condensing temperature. No adverse effects were found with the LPG mix despite the presence of little moisture (less than 0.01%) in its composition. The study reveals that LPG of the tested composition (i.e. predominantly a mixture of propane, ethane and iso-butane) can be an excellent refrigerant in heat pump/refrigeration applications.  相似文献   

7.
The prototype of a novel silica gel–water adsorption chiller is built and its performance is tested in detail. The experimental results show that the refrigerating capacity (RC) and COP of the chiller are 7.15 and 0.38 kW, respectively, when the hot water temperature is 84.8 °C, the cooling water temperature is 30.6 °C, and the chilled water outlet temperature is 11.7 °C. The RC will reach 6 kW under the condition of 65 °C hot water temperature, 30.5 °C cooling water temperature and 17.6 °C chilled water temperature. The results confirm that this kind of adsorption chiller is an effective refrigerating machine though its performance is not as fine as the prediction results. Also it is well effectively driven by a low-grade heat source. Therefore, its applications to the low-grade heat source are much attractive.  相似文献   

8.
Energy and exergy models for ideal adsorption cycles with isothermal beds and no mass recovery are developed to predict the limits to COP enhancement using thermal regeneration. The models are applied to compare the performance of zeolite–water and silica gel–water adsorbent–refrigerant pairs over a range of maximum bed temperatures. The thermodynamic consistencies of several alternate adsorption property assumptions are quantified. Differences in adsorption characteristics between zeolite–water and silica gel–water result in a significantly larger potential to enhance COP by implementing thermal regeneration for zeolite–water. Based on COP, the zeolite–water pair is preferred when both thermal regeneration and a high temperature thermal energy source (>150 °C) are used, while the silica gel–water pair is preferred when thermal regeneration is not used and/or a low temperature thermal energy source (<100 °C) is used.  相似文献   

9.
A newly developed adsorption water chiller is introduced and tested. In the new adsorption refrigeration system, there are no refrigerant valves, the problem of mass transfer resistance resulting in pressure drop along refrigerant passage in conventional systems when methanol or water is used as refrigerant can be absolutely solved. Silica-gel–water is used as working pair and mass recovery-like process is adopted in order to use low temperature heat source ranging from 70 to 85 °C effectively. The experiment results demonstrate that the chiller (26.4 kg silica-gel in each adsorber) has a cooling capacity of 2–7.3 kW and COP ranging 0.2–0.42 according to different evaporating temperatures. Based on the experimental tests of the first prototype, the second prototype is designed and tested; the experimental data demonstrate that the chiller performance has been greatly improved, with a heat source temperature of 80 °C, a COP over 0.5 and cooling capacity of 9 kW has been achieved at evaporating temperature of 13 °C.  相似文献   

10.
Over the past few decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and utilization of CFCs and HCFCs. In this paper, a dual-mode silica gel–water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. This adsorption chiller utilizes effectively low-temperature solar or waste heat sources of temperature between 40 and 95 °C. Two operation modes are possible for the advanced chiller. The first operation mode will be to work as a highly efficient conventional chiller where the driving source temperature is between 60 and 95 °C. The second operation mode will be to work as an advanced three-stage adsorption chiller where the available driving source temperature is very low (between 40 and 60 °C). With this very low driving source temperature in combination with a coolant at 30 °C, no other cycle except an advanced adsorption cycle with staged regeneration will be operational. The drawback of this operational mode is its poor efficiency in terms of cooling capacity and COP. Simulation results show that the optimum COP values are obtained at driving source temperatures between 50 and 55 °C in three-stage mode, and between 80 and 85 °C in single-stage, multi-bed mode.  相似文献   

11.
Simulation analyses for a vapour compression heat pump cycle using nonazeotropic refrigerant mixtures (NARMs) of R22 and R114 are conducted under the condition that the heat pump thermal output and the flow rate and inlet temperatures of the heat sink and source water are given. The heat transfer coefficients of the condensation and evaporation are calculated with empirical correlations proposed by the authors. The validity of the evaluation method and the correlations is demonstrated by comparison with experimental data. The relations between the coefficient of performance (COP) and composition are shown under two conditions: (1) the constant heat transfer length of the condenser and evaporator; and (2) the constant temperature of refrigerant at the heat exchanger inlet. The COP of the NARMs is higher than that of pure refrigerant when the heat transfer lengths of the condenser and evaporator are sufficiently long.  相似文献   

12.
A vapor compression cycle with a solution circuit and desorber/absorber heat exchange (DAHX) has been investigated experimentally using the ammonia/water mixture. A breadboard heat pump was designed and built to measure the cycle performance. COPs in the range of 1.2–1.8 were obtained experimentally for a temperature lift between 60 and 80°C. The cooling capacities were between 7 and 12 kW, which increased with an increase of the ammonia concentration. The pressure ratios encountered were in the range of 2–6. A COP of 1.44 at the temperature lift of 79°C was recorded with a cooling capacity at 10.25 kW. The experimental results are compared to that of the single-stage and two-stage cycle. The two-stage system had the highest temperature lift (110–120°C) and the lowest COP (0.69–1.04). The single-stage system has the highest COP (2.2–3.5) but the lowest temperature lift (40°C). Also, a solution bypass between the Absorber I outlet and Desorber II inlet was proposed to improve the cycle performance. The experimental results showed that the COP varied in the range of 1–2%, while the temperature lift increased by the range between 0 and 6°C. In addition, the analysis of the test result uncertainties was made.  相似文献   

13.
We propose in this article an absorption chiller operating with binary alkane mixtures as an alternative to compression machines. It is an installation using low-level energy at a temperature below 150 °C (waste heat or solar energy) and operating with environmentally friendly fluids. Ten mixtures are considered and compared with two cooling mediums of the condenser and the absorber: the ambient air at 35 °C and the water at 25 °C. For an air-cooled chiller, the COP reaches 0.37 for the n-butane/octane system. This value remains 27% lower than that of an ammonia/water installation operating under the same conditions. For a water-cooling chiller, the n-butane/octane and propane/octane systems give a COP of about 0.63, which is comparable to that of the ammonia/water system. When n-butane is used as refrigerant, the machine works at a pressure under 5 bars, which is an advantage compared with machines working with ammonia/water mixtures.  相似文献   

14.
Non-azeotropic refrigerant mixtures (NARMs) are investigated for a two-temperature level heat exchange process found in a domestic refrigerator-freezer. Ideal (constant air temperature) heat exchange processes are assumed. The results allow the effects of intercooling between the evaporator refrigerant stream and the condenser outlet stream to be examined in a systematic manner. For the conditions studied, an idealized NARM system will have a limiting coefficient of performance (COP) that is less than that of the best performing pure refrigerant component. However, for non-ideal heat exchange processes (gliding air temperature), the NARM-based system can have a higher limiting COP than a system running on either pure NARM component. Intercooling significantly affects the COP of NARM-based systems; however, depending on the location of ‘pinch points’ in the heat exchangers, only one intercooling heat exchanger may be needed to obtain a NARM's maximum refrigerator COP. The results are presented for mixtures of R22–R142b, R22–R123 and R32–R142b.  相似文献   

15.
This paper reports heat transfer results obtained during condensation of refrigerant propane inside a minichannel aluminium heat exchanger vertically mounted in an experimental setup simulating a water-to-water heat pump. The condenser was constructed of multiport minichannel aluminium tubes assembled as a shell-and-tube heat exchanger. Propane vapour entered the condenser tubes via the top end and exited sub-cooled from the bottom. Coolant water flowed upward on the shell-side. The heat transfer areas of the tube-side and the shell-side of the condenser were 0.941 m2 and 0.985 m2, respectively. The heat transfer rate between the two fluids was controlled by varying the evaporation temperature while the condensation temperature was fixed. The applied heat transfer rate was within 3900–9500 W for all tests. Experiments were performed at constant condensing temperatures of 30 °C, 40 °C and 50 °C, respectively. The cooling water flow rate was maintained at 11.90 l min−1 for all tests. De-superheating length, two-phase length, sub-cooling length, local heat transfer coefficients and average heat transfer coefficients of the condenser were calculated. The experimental heat transfer coefficients were compared with predictions from correlations found in the literature. The experimental heat transfer coefficients in the different regions were higher than those predicted by the available correlations.  相似文献   

16.
The performance of a solid sorption icemaker is investigated. CaCl2/activated carbon was used as compound adsorbent and ammonia was employed as adsorbate. The influence of operating conditions (cooling water temperature, mass recovery and heat pipe heat recovery, etc.) on the mass of ice, SCP (specific cooling power) and COP (coefficient of performance) was experimentally assessed. At the desorption temperature of 126 °C, cooling water temperature of 22 °C, ice produced temperature of −7.5 °C, 40 s of mass recovery and 2 min of heat pipe heat recovery, the mass of ice, SCP and COP values are 17.6 kg/h, 369.1 W/kg and 0.2, respectively.  相似文献   

17.
18.
In this paper, the energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption systems is presented. A computational model has been developed for the parametric investigation of these systems. Newly developed computationally efficient property equations of water–lithium bromide solution have been used in the computer code. The analysis involves the determination of effects of generator, absorber and evaporator temperatures on the energetic and exergetic performance of these systems. The effects of pressure drop between evaporator and absorber, and effectiveness of heat exchangers are also investigated. The performance parameters computed are coefficient of performance, exergy destruction, efficiency defects and exergetic efficiency. The results indicate that coefficient of performance of the single effect system lies in range of 0.6–0.75 and the corresponding value of coefficient of performance for the series flow double effect system lies in the range of 1–1.28. The effect of parameters such as temperature difference between heat source and generator and evaporator and cold room have also been investigated. Irreversibility is highest in the absorber in both systems when compared to other system components.  相似文献   

19.
A diffusion absorption refrigeration (DAR) cycle is driven by heat and utilizes a binary solution of refrigerant and absorbent as working fluid, together with an auxiliary inert gas. Commercial DAR systems operate with ammonia–water solution and hydrogen or helium as the inert gas. In this work, the performance of a simplified DAR system working with an organic absorbent (DMAC – dimethylacetamide) and five different refrigerants and helium as inert gas was examined numerically, with the aim of lowering the generator temperature and system pressure along with a non-toxic refrigerant The refrigerants were: chlorodifluoromethane (R22), difluoromethane (R32), 2-chloro-1,1,1,2-tetrafluoroethane (R124), pentafluoroethane (R125) and 1,1,1,2-tetrafluoroethane (R134a). The results were compared with the performance of the same system working with ammonia–water and helium. Similar behavior was found for all systems, regarding the coefficient of performance (COP) and rich and poor solution concentrations as functions of generator temperature. It was found that typical generator temperature with the new substances was 150 °C, yet lower COPs, higher evaporator temperatures and lower condensation temperature of about 40 °C governed these systems.  相似文献   

20.
The performance potential of 11 multistage, multi-effect absorption cycles is evaluated. They include water-lithium bromide, ammonia-water and cascade configurations. All evaluations are based on air-conditioning applications assuming a 4°C evaporator temperature and a 35°C condenser and absorber temperature. The sensitivity of the performance to the approach temperature in the heat exchanger was studied. Eight cycles were selected for a more detailed simulation. The highest COP at zero approach temperature was obtained for a three-stage water-lithium bromide cycle cascaded with two single-stage ammonia water cycles, while for approach temperatures of 5 K the best COP was obtained for the three-stage water-lithium bromide cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号