首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Irreversibilities in components of an aqua-ammonia absorption refrigeratio system (ARS) have been determined by second law analysis. The components of the ARS are as follows: condenser, evaporator, absorber, generator, pump, expansion valves, mixture heat exchanger and refrigerant heat exchanger. It is assumed that the ammonia concentration at the generator exit is, independent of the other parameters, equal to 0.999 and at the evaporator exit the gas is saturated vapour. Pressrre losses between the generator and condenser, and the evaporator and absorber are taken into consideration. In the results the dimensionless exergy loss of each component, the exergetic coefficient of performance, the coefficient of performance and the circulation ratio are given graphically for each different generator, evaporator, condenser and absorber temperature.  相似文献   

2.
In this paper, a new solution cycle in the double absorption heat transformer is presented and the thermodynamic performance of this new cycle is simulated based on the thermodynamic properties of aqueous solution of lithium bromide. The results show that this new cycle is superior to the cycle being studied by some researchers. This new solution cycle has a wider range of operation in which the system maintains the high value of COP and has larger temperature lifts and operation stability. The relationship between the absorber and the absorbing evaporator is more independent and this makes the operation and control of the system more easier.  相似文献   

3.
An innovative hybrid hollow fiber membrane absorber and heat exchanger (HFMAE) made of both porous and nonporous fibers is proposed and studied via mathematical simulation. The porous fibers allow both heat and mass transfers between absorption solution phase and vapor phase, while the nonporous fibers allow heat transfer between absorption solution phase and cooling fluid phase only. The application of HFMAE on an ammonia–water absorption heat pump system as a solution-cooled absorber is analyzed and compared to a plate heat exchanger falling film type absorber (PHEFFA). The substantially higher amount of absorption obtained by the HFMAE is made possible by the vast mass transfer interfacial area per unit device volume provided. The most dominant factor affecting the absorption performance of the HFMAE is the absorption solution phase mass transfer coefficient. The application of HFMAE as the solution-cooled absorber and the water-cooled absorber in a typical ammonia–water absorption chiller allows the increase of COP by 14.8% and the reduction of the overall system exergy loss by 26.7%.  相似文献   

4.
Discussion of the feasibility of the Einstein refrigeration cycle   总被引:4,自引:0,他引:4  
A careful modelling of the thermodynamic properties of the water–ammonia–butane system, the working fluid mixture used in the Einstein cycle, with the Patel–Teja cubic equation of state is performed. Numerical simulation is used to investigate the feasibility limits of this refrigeration cycle. Two modified configurations of the cycle are considered. A conflict between the evaporator and the condenser/absorber operating conditions is noted. The condenser/absorber operation needs a higher system pressure, which limits the refrigeration temperature in the case of air-cooling. On the other hand, the condensation of ammonia and the presence of a small quantity of water in the evaporator limit also the refrigeration temperature. In the case of a water-cooled machine, with a condenser/absorber temperature of 30 °C, the cycle COP reaches 0.19 which is still low.  相似文献   

5.
A theoretical thermodynamic analysis was performed on an aqua-ammonia refrigeration (AAR) cycle coupled to a solar water heating system using CPC-collectors and augmented with auxialiary energy. Thirteen AAR cycles were considered in the search for the maximum coefficient of performance. Also investigated was the exergetic performance of the AAR cycle. The adopted temperature and mass flow rate control strategy on the storage tank-auxiliary heater-AAR generator loop ensured operation of the refrigeration systems at design conditions. Consequently, the ratio between the pumps' electrical power and the designed evaporator heat transfer rate was kept to a minimum.  相似文献   

6.
Refrigeration cogeneration systems which generate power alongside with cooling improve energy utilization significantly, because such systems offer a more reasonable arrangement of energy and exergy “flows” within the system, which results in lower fuel consumption as compared to the separate generation of power and cooling or heating. This paper proposes several novel systems of that type, based on ammonia–water working fluid. Importantly, general principles for integration of refrigeration and power systems to produce better energy and exergy efficiencies are summarized, based primarily on the reduction of exergy destruction. The proposed plants analyzed here operate in a fully-integrated combined cycle mode with ammonia–water Rankine cycle(s) and an ammonia refrigeration cycle, interconnected by absorption, separation and heat transfer processes. It was found that the cogeneration systems have good performance, with energy and exergy efficiencies of 28% and 55–60%, respectively, for the base-case studied (at maximum heat input temperature of 450 °C). That efficiency is, by itself, excellent for cogeneration cycles using heat sources at these temperatures, with the exergy efficiency comparable to that of nuclear power plants. When using exhaust heat from topping gas turbine power plants, the total plant energy efficiency can rise to the remarkable value of about 57%. The hardware proposed for use is conventional and commercially available; no hardware additional to that needed in conventional power and absorption cycles is needed.  相似文献   

7.
A diffusion absorption refrigeration (DAR) cycle is driven by heat and utilizes a binary solution of refrigerant and absorbent as working fluid, together with an auxiliary inert gas. Commercial DAR systems operate with ammonia–water solution and hydrogen or helium as the inert gas. In this work, the performance of a simplified DAR system working with an organic absorbent (DMAC – dimethylacetamide) and five different refrigerants and helium as inert gas was examined numerically, with the aim of lowering the generator temperature and system pressure along with a non-toxic refrigerant The refrigerants were: chlorodifluoromethane (R22), difluoromethane (R32), 2-chloro-1,1,1,2-tetrafluoroethane (R124), pentafluoroethane (R125) and 1,1,1,2-tetrafluoroethane (R134a). The results were compared with the performance of the same system working with ammonia–water and helium. Similar behavior was found for all systems, regarding the coefficient of performance (COP) and rich and poor solution concentrations as functions of generator temperature. It was found that typical generator temperature with the new substances was 150 °C, yet lower COPs, higher evaporator temperatures and lower condensation temperature of about 40 °C governed these systems.  相似文献   

8.
A single-stage vapour absorption refrigeration system (VARS) is tested with monochlorodifluoromethane (HCF22) as refrigerant and different absorbents: dimethylether of tetraethylene glycol (DMETEG) and dimethyl acetamide (DMA). The influence of generator temperatures in the range 75–95°C, which represents low-grade heat sources, is studied. Cooling water temperatures were varied between 20 and 30°C. Two cases of cooling water flow paths are considered, i.e. water entering either absorber or condenser, which are connected in series. For HCFC22-DMETEG, COP values in the range 0.2–0.36 and evaporator temperatures between 0 and 10°C are obtained. For HCF22-DMA, COP values in the range 0.3–0.45 and evaporator temperatures between −10 and 10°C are obtained. It is observed that HCFC22-DMETEG can work at lower heat source temperatures than HCFC22-DMA. However, at the same operating conditions HCFC22-DMA is better from the viewpoints of circulation ratio and COP. Experiments also show that at low heat source temperature, cooling water temperature has strong influence on circulation ratio but does not affect COP significantly. Preferably, cooling water should first flow through the condenser and then through the absorber in order to achieve improved overall performance.  相似文献   

9.
A new combined power and refrigeration cycle is proposed for the cogeneration, which combines the Rankine cycle and the ejector refrigeration cycle by adding an extraction turbine between heat recovery vapor generator (HRVG) and ejector. This combined cycle could produce both power output and refrigeration output simultaneously, and could be driven by the flue gas from gas turbine or engine, solar energy, geothermal energy and industrial waste heats. Parametric analysis and exergy analysis are conducted to examine the effects of thermodynamic parameters on the performance and exergy destruction in each component for the combined cycle. The results show that the condenser temperature, the evaporator temperature, the turbine inlet pressure, the turbine extraction pressure and extraction ratio have significant effects on the turbine power output, refrigeration output, exergy efficiency and exergy destruction in each component in the combined cycle. It is also shown that the biggest exergy destruction occurs in the heat recovery vapor generator, followed by the ejector and turbine.  相似文献   

10.
General models for the design of the heat exchangers (absorber, generator, condenser and evaporator) of a prototype of an air-cooled absorption chiller of 2 kW for air-conditioning using the pair H2O–LiBr have been developed. An absorption machine of such characteristics has been constructed to be used as a test facility for validating the results obtained from the mathematical models developed. The discrepancies considering the heat exchanged between numerical results and experimental data are under 15% in most cases for all these components except the condenser, where the discrepancies are higher. The conclusions reported will lead to: (i) future improvements of the mathematical simulation models and (ii) improvements in the experimental infrastructure.  相似文献   

11.
The importance of biogas as a renewable alternative is being studied because of an increase in the cost of conventional fuels. The present article suggests a numerical study of a biogas powered NH3–H2O absorption refrigeration system where biogas is used to heat the water which serves as an energy input to generator of an absorption system. A computational model has been developed for the analysis which involves the determination of effect of generator temperature on various performance parameters, i.e., exergy losses in the different components, COPcooling, COPheating and the exergy efficiency. The results indicate that COPcooling and COPheating lies in the range of 0.159–0.33 and 1.16–1.33, respectively, whereas exergetic efficiency lies in the range of 0.29–0.80 for the same variation in generator temperature ranging from 50 to 70 °C. The highest exergy loss is found in the generator while the lowest is found in the condenser and it is also found that with an increase in the evaporator as well as absorber and condenser temperature, the COP increases and decreases, respectively. The effect of ambient temperature on exergy loss in the different components is also studied. Exergy analysis is an excellent tool to pin point the losses in the system due to irreversibility which are the basis for the further improvement in the system components.  相似文献   

12.
As per the Montreal Protocol, CFCs and HCFCs are being phased out. HCFC-22 is used in window air conditioners. This paper presents the experimental performance study of a window air conditioner with propane (HC-290), a natural refrigerant, as a drop-in substitute to HCFC-22. Experimental results showed that HC-290 had 6.6% lower cooling capacity for the lower operating conditions and 9.7% lower for the higher operating conditions with respect to HCFC-22. The coefficient of performance for HC-290 was 7.9% higher for the lower operating conditions and 2.8% higher for the higher operating conditions. The energy consumption of the unit with HC-290 was lower in the range 12.4–13.5% than HCFC-22. The discharge pressures for HC-290 were lower in the range 13.7–18.2% than HCFC-22. For HC-290, the pressure drop was lower than HCFC-22 in both heat exchangers.This paper also presents simulation results for the heat exchangers of an HCFC-22 window air conditioner with HC-290 as a drop-in substitute. The simulation has been carried out using EVAP-COND, a heat exchanger model developed by NIST [National Institute of Standards and Technology. EVAP-COND: simulation models for finned-tube heat exchangers, Maryland, USA (2003). http://www2.bfrl.nist.gov/software/evap-cond/ [18]]. The simulated evaporator capacities are within ±4% of the experimentally measured cooling capacities for both refrigerants. Simulation results for HC-290 and HCFC-22 are compared. The exit temperatures of HC-290 are lower by 0.3–1.2 °C in the condenser and are higher by 2.1–2.4 °C in the evaporator than HCFC-22. Evaporating pressures of HC-290 are lower by 2.1–3.3% as compared to HCFC-22. The pressure drops of HC-290 are lower in both the evaporator and the condenser as compared to HCFC-22. The outlet temperatures of air for HCFC-22 and HC-290 in both heat exchangers are nearly the same.  相似文献   

13.
Non-azeotropic refrigerant mixtures (NARMs) are investigated for a two-temperature level heat exchange process found in a domestic refrigerator-freezer. Ideal (constant air temperature) heat exchange processes are assumed. The results allow the effects of intercooling between the evaporator refrigerant stream and the condenser outlet stream to be examined in a systematic manner. For the conditions studied, an idealized NARM system will have a limiting coefficient of performance (COP) that is less than that of the best performing pure refrigerant component. However, for non-ideal heat exchange processes (gliding air temperature), the NARM-based system can have a higher limiting COP than a system running on either pure NARM component. Intercooling significantly affects the COP of NARM-based systems; however, depending on the location of ‘pinch points’ in the heat exchangers, only one intercooling heat exchanger may be needed to obtain a NARM's maximum refrigerator COP. The results are presented for mixtures of R22–R142b, R22–R123 and R32–R142b.  相似文献   

14.
The knowledge of the characteristics of unused, excess and untapped exergy allows a thorough analysis of internal energy flows distribution within a sorption heat pump. It can be applied to any system based on gas–liquid absorption, adsorption or solid–gas reaction as well as to any process based on the internal recycling of the energy flux. It can also be applied for the case of a simple effect ideal machine, in particular in the definition of processes where the COP is larger than 2: the levels at which the initial exergy is downgraded on the one hand, as well as, the upgraded excess exergy produced on the other allows the designer to make a judicious choice of a system.  相似文献   

15.
An economic analysis of the role of biogas and cooling water in a lithium bromide—water absorption system has been carried out to optimize the generator, condenser and absorber temperatures at a given evaporator temperature and solution pumping rate. The analysis has been repeated for different pumping rates (PR) to determine the optimum PR corresponding to the minimum over-all operating cost of the system. The study has also been carried out for the condition when biogas in the generator and cooling water in the absorber and condenser are supplied at equal flow-rates. It is found that the performance of the LiBr-H2O system at equal biogas and cooling water flow-rates is about 5.988% higher than when operated at the minimum over-all operating cost, the latter being cheaper by only 2.71%. For low evaporation temperatures, use of a preheater in a LiBr-H2O system creates a crystallization problem when operated at low pumping rates. The study has therefore been extended for a system without preheater. The parameters under study are illustrated graphically against the generator temperature. Equations to obtain the corresponding optimum condenser and absorber temperature are given. The functional relationship between crystallization limit and absorbent temperature has also been obtained. The optimum operating parameters are presented graphically.  相似文献   

16.
Most water–lithium bromide (LiBr) absorption chillers have a purge system to remove non-absorbable gases that cause a reduction in cooling capacity. Generally, the non-absorbables are originated in corrosion/passivation processes inside the machine, but leaks can also be a source of concern. However, since leaks must be corrected immediately to avoid machine deterioration, this study is mostly aimed at the non-absorbables evolved during operation. This paper analyses the effect of inlet non-absorbable air concentration, outlet purge velocity, absorber pressure and cooling water temperature on the falling film absorption process inside a vertical tube absorber, based on a simple transport coefficient model. This model consists of three ordinary differential equations solved with as method for initial-value problem, and a set of auxiliary equations. The study shows that the effect of non-absorbables can be significant, and furthermore provides a quantitative framework to aid in purge design. The nominal working conditions in this study were a solution Reynolds number of 100, an absorber pressure of 1.3 kPa, a cooling water temperature of 35 °C and an inlet solution concentration of 62% LiBr by weight. The results indicate that a minimum vapour velocity is required to sweep the non-absorbables along the absorber towards the purge, thus preventing reduced absorption fluxes. At a cooling water temperature of 35 °C, an inlet air concentration of 20% (by mole) resulted in a 61% reduction in mass absorption flux.  相似文献   

17.
The objectives of this paper are to investigate the effect of heat transfer additive and surface roughness of micro-scale hatched tubes on the absorption performance and to provide a guideline for the absorber design. Two different micro-scale hatched tubes and a bare tube are tested to quantify the effect of the surface roughness on the absorption performance. The roughness of the micro-scale hatched tubes ranges 0.39–6.97 μm. The working fluid is H2O/LiBr solution with inlet concentration of 55, 58 and 61 wt.% of LiBr. Normal Octanol is used as the heat transfer additive with the concentration of 400 ppm. The absorber heat exchanger consists of 24 horizontal tubes in a column, liquid distributor at the liquid inlet and the liquid reservoir at the bottom of the absorber. The effect of heat transfer additive on the heat transfer rate is found to be more significant in the bare tube than that in the micro-scale hatched tubes. It is found that the absorption performance for the micro-hatched tube with heat transfer additive becomes up to 4.5 times higher than that for the bare tube without heat transfer additive. It is concluded that the heat transfer enhancement by the heat transfer additive is more significant than that by the micro-scale surface treatment.  相似文献   

18.
An experimental investigation on the performance of an air-cooled modified generator absorber heat exchange (GAX) absorption cooling system has been carried out and presented in this paper. The conventional system is modified by incorporating high pressure GAX, low pressure GAX, a solution cooler and an additional solution heat exchanger to reduce the heat input to the system. The system is designed for a cooling capacity of 10.5 kW using ammonia-water (NH3-H2O) as the working fluid. The performance of the system in terms of the circulation ratio, internal heat recovery and coefficient of performance (COP) has been obtained. The system is capable of producing a low evaporator temperature of −5 °C, at a sink temperature of 35 °C, under no load conditions. The results indicate that at a generator and evaporator temperature of 120 °C and 2 °C respectively, the system delivers a maximum cooling capacity of about 9.5 kW with a fuel and total COP of 0.61 and 0.57 respectively.  相似文献   

19.
This study aims at investigating experimentally and analytically the characteristics and properties of a membrane utilized to design compact absorbers for lithium bromide–water absorption chillers. The main focus of this study are the factors that influence the water vapor transfer flux into a lithium bromide–water solution in confined narrow channels under vacuum conditions, as well as the properties limits for utilization in compact absorber design. The results indicate that the desired membrane characteristics for this application are as follows: high permeability to water vapor, hydrophobic to the aqueous solution with high liquid entry pressure (LEP) to avoid wettability of the membrane pores and no capillary condensation of water vapor to avoid blocking of the pores. For practical use, this membrane should have a thin hydrophobic microporous active layer with a thickness up to 60 μm, mean pore sizes around 0.45 μm and a porosity of up to 80%. The active layer should be attached to a porous support layer to meet the mechanical strength requirements needed for practical use in the absorber of lithium bromide water absorption chillers application.  相似文献   

20.
The organic working pairs trifluoroethanol (TFE)–tetraethyleneglycol dimethyether (TEGDME or E181) and methanol–TEGDME have some advantages over classical water–LiBr and ammonia water working pairs in absorption cycles. One of the most important features is the wide working range caused by the absence of crystallization, the low freezing temperatures of the refrigerants and the thermal stability of the mixtures at high temperatures.The performance of a double effect absorption cycle for these organic mixtures can be improved if a compression stage is introduced between the evaporator and the absorber. The coefficient of performance (COP) and primary energy ratio (PER) values in the cooling mode are significantly increased over a wide working range: the cycle can work with temperature lifts of 50ºC at 5ºC in the evaporator or it can also be powered by low grade heat. For these conditions COP and PER values are higher than 1.0 and 0.7 respectively, and the power supplied to the compressor represents up to 15% of the thermal energy supplied to the generator. As it is possible to work at high temperatures lifts, the absorber and condenser can be air cooled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号