首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
光学相干层析-血管内超声联合(Optical coherence tomography intravascular ultrasound, OCT-IVUS)成像技术能同时弥补光学相干涉成像的低成像深度与超声成像的低分辨率,能够较为全面地进行血管内的易损斑块识别,但受血管内超声(Intravascular ultrasound, IVUS)技术超声激发重复频率限制,OCT-IVUS成像难以在高帧率成像的同时获得高成像线数,从而影响显示分辨率。为提升IVUS成像速度,同时不降低图像显示的分辨率,尝试应用高重频超声激发技术的方法解决这一难题。本文设计了一种50 kHz的高重频超声激发电路,并在此设计基础上研制了一种50 f/s的高速超声内窥成像系统;进而对系统性能进行测试。激发电路高压脉冲测试以及信噪比(Signal noise ratio, SNR)测试结果表明:激发电路可用于25 MHz超声换能器的激发,具有较高的SNR;应用此激发电路所研制的超声内窥成像系统能够在不降低显示分辨率的前提下提高成像速度,该系统技术能有效检出易损斑块,促进OCT-IVUS的临床应用,对心血管疾病的早期发现、诊断和预防具有一定价值。  相似文献   

2.
样品被短脉冲激光照射后会受激产生超声波,这种现象被称为光声效应。随着激光器技术及超声探测技术的进 步,基于此效应的光声成像技术已成为生物医学成像领域发展最快的技术之一。光声成像作为一种混合型的成像方式, 结合了光学成像的高对比度和光谱识别特性,以及超声成像大穿透深度下仍具备较高分辨率的特点。光声成像技术不仅 可对包括血红蛋白、脂肪在内的多种组织成分进行高特异性成像,还能灵敏的反映包括血氧含量、氧代谢率等生理特征 的变化,与超声技术的形态和结构成像具有很强的互补性,已在临床及生物医学研究领域体现出巨大的应用潜力。光声 成像技术的这些特性使其在恶性肿瘤、心血管疾病、微循环异常等疾病的成像诊断和治疗引导中具有重要的应用前景。 文章小结了本课题组在光声成像技术领域最近取得的一些新进展,包括利用解卷积技术进一步提高光声显微成像分辨 率;利用压缩感知技术降低数据采集量,提高光声层析成像的速度;利用自制的纳米探针,实现光声分子成像和光热治 疗。光声成像技术的这些进步使其在癌症、心脑血管疾病等方面的诊断和治疗更具有可行性,文章最后回顾了光声成像 技术在乳腺癌、前哨淋巴结及血管内成像等方面的临床应用和研究进展。  相似文献   

3.
光镊技术广泛应用物理、化学和生物等领域的非接触微粒操控,其基本原理是基于光场与微粒相互作用和感应线性极化。随着激光技术的发展,超快脉冲光束应用于光镊技术的研究越来越多。相比于连续激光,低功率高重复频率超快脉冲光束捕获微粒具有更高的捕获效率,不仅粒子所受的瞬时光力较大,而且较高的重复频率能够保证粒子被重复捕获。基于激光光镊技术的基本原理,阐述了光镊技术的研究进展,着重介绍了超快脉冲光束在光镊技术中的应用;基于超快脉冲光束与瑞利粒子相互作用过程中的理论,研究了光学力的计算方法,在理论上论证了超快脉冲光束用于捕获粒子的高效性,发展和完善了单粒子的光学表征技术,探讨了超快脉冲光束捕获粒子在生物光子学和超分辨成像等方面的应用。超快脉冲光束在光镊技术中的应用有利于研究光捕获动力学。  相似文献   

4.
郭进  刘侠  董迪  朱守平  杨鑫  田捷 《自动化学报》2013,39(12):2043-2050
光学投影断层成像(Optical projection tomography,OPT)技术可以对1~10mm 尺度的低散射生物样本进行激发成像,具有微米级的空间分辨率、无辐射、成本低等特点,为小尺寸生物样本的高分辨率三维成像提供了一种新的手段. OPT最早通过对离体生物组织如小鼠胚胎、小鼠器官等成像,进行药物疗效评估、基因表达等研究,但是离体成像不能动态、完整地反映生物组织的变化,因此活体成像技术逐渐成为OPT领域的研究热点.本文详细介绍了我们自主研发的活体OPT系统,该成像系统以准直激光器为光源单元,高精密移动和旋转 电控平台为样本定位单元,低温电子倍增(Electron multiplying,EM) CCD探测器为采集单元,实现了针对果蝇蛹等小模式动物的活体三维成像.该系统的空间分辨率优于10 μm,成像视野1~10mm,扫描时间小于2min,重建时间小于5s.最后,本文通过果蝇蛹的三维活体成像实验展示该系统的操作流程、成像结果和初步的生物应用.  相似文献   

5.
空间调制型全偏振计算成像同时获得可见光和红外通道图像,但是受探测器限制,2个通道的图像空间分辨率不一致,给后端的图像融合及目标探测过程带来不便.为此,提出基于场景特征迁移学习的空间调制型计算成像超分辨率方法.首先在分析空间调制计算成像的相同场景异源图像特点基础上,构建场景特征迁移模型;然后建立改进场景迁移卷积神经网络结构并选择修正线性激活函数,同时增加空间分辨率一致性约束;再设计最优光谱迁移响应学习策略,并作为前端输入加到超分辨率网络;最后将光谱迁移响应优化与全偏振超分辨率重建的参数联合学习,获得高分辨率偏振图像.利用实际成像系统的仿真数据及系统数据进行2倍和3倍超分辨率实验,从主观视觉效果、客观量化评价指标和偏振参量解析结果3个方面对多个指标进行评价.结果表明,文中方法在视觉效果上能够保持目标轮廓并抑制噪声干扰,在16个客观指标对比数据上取得了10个优于、3个相同和3个低于的结果,验证了该方法的有效性,为成像系统定标校正提供数据支持.  相似文献   

6.
在医学和生物学研究当中,对活体组织进行无创性成像具有重要意义。高分辨率超声成像技术,可以对细微组 织实现高空间分辨率的成像,已被广泛应用于皮肤、眼睛、心血管和小动物成像等生物医学领域。目前领域内的相关研 究需要不同的成像系统参数,例如要求不同的探头性能、数据采集策略、信号处理以及图像重建、显示和保存方法。因 此需要一种灵活和开放的超声成像系统,能让用户根据各种研究需求实现个性化设置并能全面获取原始实验数据。文章 提出了一种实时的、便携式设计的开放式超声成像系统,可支持定制的高分辨率超声成像研究。系统基于高速现场可 编程逻辑门阵列(FPGA)实现灵活多样的超声成像。用户可以轻松地根据个性化应用需求来调整系统结构。测试结果表 明,本系统能实现 B 超成像、编码激励成像、多普勒成像、血管内成像、多模态组合成像等,为高分辨率生物医学应用 研究提供了非常灵活的成像工具。  相似文献   

7.
光声成像作为一种兼具高光学对比度和大超声探测深度的新兴成像方法,突破了传统光学成像技术分辨率与成像深度相互制约的壁垒,获得了空前快速的发展,其中,光声显微成像技术继承了光声成像技术的优点,采用声学或光学聚焦的成像模式,可以实现高对比度、高分辨率的生物组织结构、分子与功能成像,在神经学、眼科、血管生物学和皮肤学等研究领域具有潜在应用价值。为此,首先介绍了光声成像技术的原理和分类,然后围绕光声显微成像(Photoacoustic microscopy, PAM)技术这一主题,重点综述了新型PAM技术的发展情况、PAM焦深(Depth of focus, DoF)延拓技术以及PAM的生物医学应用。最后,总结了PAM技术发展存在的挑战,并对未来发展方向进行了展望。  相似文献   

8.
生物组织光声成像技术综述   总被引:1,自引:0,他引:1  
光声成像是一种低功率、非电离的成像方式,既具有声学方法对深层组织成像分辨率高的优点,又具有光学方法在功能成像、分子成像方面具有高对比度的优势。本文回顾了近年来,光声成像技术在生物医学领域的研究进展,介绍了光声成像的基本成像原理。以此为基础,本文介绍了光声成像的两种主要成像方案:光声断层成像和光声显微镜,并且讨论了光声成像在获取生物组织化学成分信息和微结构信息方面的优越性;最后,本文对光声成像技术的优点和应用前景进行了总结。  相似文献   

9.
一种多幅欠采样图像的凸集投影超分辨率重建方法   总被引:1,自引:0,他引:1  
介绍了一种由多幅欠采样低分辨率图像重建一幅高分辨率图像的凸集投影超分辨率重建技术。首先介绍了超分辨率空间域迭代重建方法中一个至关重要的因素--成像过程模型;其次通过介绍凸集投影的理论依据,给出了插值-模拟采样迭代超分辨率重建方法的模型和重建步骤;最后通过实验数据对算法进行了验证。  相似文献   

10.
星载三维成像雷达高度计研究   总被引:4,自引:0,他引:4       下载免费PDF全文
介绍了一种新型的三维成像雷达高度计的研究方案。这种新型的雷达高度计采用双抛物面天线,在方位向利用合成孔径技术,在距离向利用线性调频脉冲压缩技术来获得两个方向的地面分辨率,在第三维高度方向利用双天线获取相干信号并通过算法提取高程信息。该高度计可同时用于海洋和陆地的成像。  相似文献   

11.
介绍了常用的磁共振成像加速方法,其中并行成像尤为重要,因为它可以和其他加速方法互补;还介绍了5种常见的并行成像方法:利用局部灵敏度的部分并行成像、灵敏度编码、空间谐波同时获取、泛化自校正部分并行获取、与基于阵列线圈灵敏度的并行编码与复原.最后,讨论了这5种方法的互相联系,以及在工业上的应用,并展望了动态成像和非笛卡尔坐...  相似文献   

12.
计算成像是融合光学硬件、图像传感器和算法软件于一体的新一代成像技术,突破了传统成像技术信息获取深度(高动态范围、低照度)、广度(光谱、光场、3维)的瓶颈。本文以计算成像的新设计方法、新算法和应用场景为主线,通过综合国内外文献和相关报道来梳理该领域的主要进展。从端到端光学算法联合设计、高动态范围成像、光场成像、光谱成像、无透镜成像、低照度成像、3维成像和计算摄影等研究方向,重点论述计算成像领域的发展现状、前沿动态、热点问题和趋势。端到端光学算法联合设计包括了可微的衍射光学模型、折射光学模型以及基于可微光线追踪的复杂透镜的模型。高动态范围光学成像从原理到光学调制、多次曝光、多传感器融合以及算法等层面阐述不同方法的优点与缺点以及产业应用。光场成像阐述了基于光场的3维重建技术在超分辨、深度估计和3维尺寸测量等方面国内外的研究进展和产业应用,以及光场在粒子测速及3维火焰重构领域的研究进展。光谱成像阐述了当前多通道滤光片,基于深度学习和波长响应曲线求逆问题,以及衍射光栅、多路复用和超表面等优化实现高光谱的获取。无透镜成像包括平面光学元件的设计和优化,以及图像的高质量重建算法。低照度成像包括低照度情况下基于单帧、多帧、闪光灯和新型传感器的图像噪声去除等。3维成像主要包括针对基于主动方法的深度获取的困难的最新的解决方案,这些困难包括强的环境光干扰(如太阳光)、强的非直接光干扰(如凹面的互反射、雾天的散射)等。计算摄影学是计算成像的一个分支学科,从传统摄影学发展而来,更侧重于使用数字计算的方式进行图像拍摄。在光学镜片的物理尺寸、图像质量受限的情况下,如何使用合理的计算资源,绘制出用户最满意的图像是其主要研究和应用方向。  相似文献   

13.
14.
在体生物光学成像技术的研究进展   总被引:1,自引:0,他引:1  
李慧  戴汝为 《自动化学报》2008,34(12):1449-1457
在体生物发光成像和在体荧光成像是近年来新兴的在体生物光学成像技术, 能够无损实时动态监测被标记细胞在活体小动物体内的活动及反应, 在肿瘤检测、基因表达、蛋白质分子检测、药物受体定位、药物筛选和药物疗效评价等方面具有很大的应用潜力. 本文详细介绍了在体生物发光成像和在体荧光成像的特点、系统及应用, 比较了它们的异同, 综述了在体生物光学成像技术的基本原理和应用领域, 讨论了将其应用于临床的进一步发展方向.  相似文献   

15.
磁共振成像是一种应用广泛的无创医学成像方法,因其丰富的软组织对比度可以成像人体几乎所有内部结构,包括器官、骨骼、肌肉和血管,已成为临床医学影像诊断的利器。然而磁共振成像存在两大公认的瓶颈:成像速度慢、扫描操作烦琐。深度学习给磁共振成像带来莫大的契机,给传统磁共振加速成像带来新的可能。鉴于该领域的快速发展性质,本文旨在总结文献中报道的大量深度学习和磁共振图像重建相结合的方法,以更好地了解该领域。本文简单介绍磁共振成像在多通道线圈接收的并行加速和压缩感知加速下的深度学习重建方法,其中单对比度图像可通过多通道接收线圈提供的冗余度用于加速,多对比度图像可额外使用不同对比度图像这一维度用于加速,动态图像与多对比度图像类似可额外使用时间维度用于加速,本文也将介绍深度学习在这些方面的发展。随着磁共振成像近年来由定性多对比度成像向定量多参数成像的发展,其中定量成像的图像中可内含多对比度图像,如何借用深度学习提供的能力将定性多对比度图像映射到参数图也是一个难点,近年来这一方向也获得了较快的发展,文中也将针对这方面内容进行调研并介绍。针对上述内容,分别介绍国际研究现状和国内研究现状,拟更好地总结国内外研究的发展的异同和趋势。最后对深度学习助力定量磁共振成像方面进行了展望。  相似文献   

16.
微波强度关联成像技术通过发射时空两维随机辐射场,并与接收的目标回波强度数据进行关联以实现超天线孔径限制的微波成像。作为一种新型静止雷达成像技术,其不同模型参数对于重构图像辐射性能影响尚不明确。基于微波强度关联成像模型,通过改变模型参数设置,可以获得观测矩阵和重构图像的辐射特性变化趋势,以此分析不同参数设置下图像的辐射性能。分析结果表明:改进天线阵元数目、带宽等模型参数,能有效提高图像辐射性能,尤其是大场景高分辨率的成像区域;增大天线平台高度和网格长度,图像辐射性能有所降低;对于地物均匀的场景,系统设计要求相对较低。分析结果将有助于改善系统设计参数。  相似文献   

17.
Challenges remain in fluorescence reflectance imaging (FRI) in in vivo experiments, since the target fluorescence signal is often contaminated by the high level of background signal originated from autofluorescence and leakage of excitation light. In this paper, we propose an image subtraction algorithm based on two images acquired using two excitation filters with different spectral regions. One in vivo experiment with a mouse locally injected with fluorescein isothiocyanate (FITC) was conducted to calculate the subtraction coefficient used in our studies and to validate the subtraction result when the exact position of the target fluorescence signal was known. Another in vivo experiment employing a nude mouse implanted with green fluorescent protein (GFP)—expressing colon tumor was conducted to demonstrate the performance of the employed method to extract target fluorescence signal when the exact position of the target fluorescence signal was unknown. The subtraction results show that this image subtraction algorithm can effectively extract the target fluorescence signal and quantitative analysis results demonstrate that the target-to-background ratio (TBR) can be significantly improved by 33.5 times after background signal subtraction.  相似文献   

18.
光学分子影像成为近年来医学影像学研究中的新兴热点之一,其以靶向性的分子影像探针为先决条件,以新兴成像模态为发展特色,以多模态分子影像技术为核心内容,以分子影像手术导航为应用出口,在预临床和临床应用方面都取得了突出的进展。在分子影像探针方面,靶向性的光学分子影像探针在疾病的诊断和治疗研究与应用中得到越来越多的关注。契伦科夫成像作为一种新型的光学分子成像模态,可以实现肿瘤的高灵敏早期检测与精准定位。在多模态分子影像方面,以光学为核心有机融合结构与代谢信息的多模态分子成像技术成为医学影像技术发展的前沿,研发实现结构、功能和分子影像数据的同机获取的光学多模态分子影像成像设备,为生物医学领域的研究提供更精细、更全面的生理病理信息。在分子影像手术导航方面,光学分子影像作为一种非入侵式的成像技术,实现手术过程中对肿瘤及病灶组织边界的实时、精准定位,有效的为外科医生提供辅助,从而提高患者的生存率。总之,光学分子影像技术的不断发展,为疾病的精确诊断与个性化治疗提供新的手段。  相似文献   

19.
Due to the high hardware complexity and low dose efficiency of existing X-ray phase contrast imaging, the biomedical and clinical applications of this novel imaging technique have been hindered. This study proposes a deep learning method, named DeepPhase, to extract differential phase contrast (DPC) image from two dual-energy absorption images. It obviates the need of dedicated DPC imaging devices such as Talbot–Lau gratings and is compatible with diagnostic-level dual-energy X-ray imaging hardware. Given two dual-energy absorption images for an object, all we need to produce its DPC image at a certain energy is a well-trained DeepPhase network. Results demonstrate that, compared with conventional Talbot–Lau interferometry, DeepPhase achieves high-quality DPC imaging at multiple dual-energy combinations and low radiation dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号