首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
以硫酸锌和草酸为原料,采用超声波沉淀法,研究了不同粒径的纳米氧化锌的制备,讨论了不同工艺条件对粒径的影响规律。实验结果表明,采用超声波沉淀法可以制备出平均粒径为21~47nm的纳米氧化锌;反应条件对纳米氧化锌的粒径有显著影响:纳米氧化锌的粒径随草酸与硫酸锌配比的增大而增大,而随反应温度的升高而减小;并且沉淀剂的加入方式对所制备的纳米氧化锌的粒度也有较大影响:一次性将草酸沉淀剂倾倒入锌盐溶液比缓慢滴加所得微粒的粒径较小。  相似文献   

2.
以无水硫酸铜和氢氧化钡为原料,采用均匀沉淀法研究了不同粒径纳米Cu(OH)2的制备,考察了搅拌温度、硫酸铜溶液浓度等反应条件对纳米Cu(OH)2粒径的影响。实验结果表明,用均匀沉淀法可以制备出不同粒度的纳米Cu(OH)2颗粒。反应条件对纳米Cu(OH)2的粒径有显著影响,反应温度越高,纳米粒子的粒径越小;硫酸铜溶液的浓度越高,纳米粒子的粒径越大。  相似文献   

3.
直接沉淀法制备纳米氧化锌工艺研究   总被引:1,自引:0,他引:1  
提供一种以醋酸锌与碳酸氢铵为原料,添加表面活性剂,直接沉淀法制备纳米氧化锌的新工艺。讨论了反应物浓度和配比、反应温度、反应时间、前驱物碱式碳酸锌热分解温度对纳米氧化锌形成的影响。采用透射电镜(TEM)、X射线衍射(XRD)、热重/差热分析(TG/DTA)等方法对制备的纳米氧化锌进行表征,结果为:制得的氧化锌的平均粒径在20—80nm,晶型为六方晶系。  相似文献   

4.
纳米氧化锌的制备与表征   总被引:11,自引:0,他引:11  
对传统的直接沉淀法进行了改进 ,对反应温度、搅拌速度、投料方式及洗涤条件等多种因素对产物纳米氧化锌的影响进行了研究。结果表明 ,改进的直接沉淀法制备纳米氧化锌具有工艺简单、成本较低 ,能够得到六方晶系、球形 ,粒径约为 15~ 2 5nm的纳米氧化锌  相似文献   

5.
微波煅烧制备纳米氧化锌   总被引:5,自引:0,他引:5  
报道了用直接沉淀法制备碱式碳酸锌,然后用微波焙烧制备纳米氧化锌的方法。在沉淀反应后的混合液中适当地加入氨水进行处理,最后还可制得肤色纳米氧化锌。此方法制备的纳米氧化锌粒径在10—20nm,分布均匀,分散性好。  相似文献   

6.
以氧化镁和碳酸铵为原料,采用沉淀转化法研究了不同粒径纳米氧化镁的制备,讨论了加料方式、反应物配比、反应温度、煅烧温度等条件对其粒径的影响。实验结果表明:用沉淀转化法制备出不同粒径的纳米氧化镁颗粒;加料方式对纳米氧化镁的平均粒径有影响,滴加加料法比一次加料法制备的氧化镁粒径大;反应条件对粒径也有显著影响,反应物配比越大,纳米氧化镁粒径越大;反应温度越高,其粒径越小;煅烧温度越高,其粒径越大。  相似文献   

7.
以七水硫酸锌和碳酸氢钠为原料,在超快速混合微反应器中合成氧化锌前驱体碱式碳酸锌,再通过焙烧获得纳米氧化锌。考察了各操作条件对纳米氧化锌颗粒制备的影响,采用TEM、XRD、BET等手段对所得的样品做了表征。结果表明,采用快速沉淀法,通过超快速混合微反应器可实现纳米氧化锌的可控制备,所得纳米氧化锌平均粒径为14~55 nm,晶型为六方晶系结构,样品粒径分布窄,分散性良好。  相似文献   

8.
凝胶网格沉淀法制备纳米二氧化硅   总被引:4,自引:0,他引:4  
李曦  刘连利  王莉丽  石文凤 《硅酸盐通报》2007,26(3):486-489,493
主要研究了凝胶网格沉淀法制备纳米二氧化硅的工艺条件,如:琼脂用量、HCl浓度、SiO32-离子浓度、反应物物质的量比(H /SiO32-)等因素对产物粒径的影响。实验确定制备纳米二氧化硅的最佳工艺条件为:琼脂质量分数为11.5%,盐酸浓度为0.6mol/L,硅酸钠浓度为0.4mol/L,最佳配比(SiO23-/H )为1:2.1。采用XRD、TG-DTA及透射电镜等测试手段对产物进行了表征。研究表明:采用凝胶网格沉淀法可制得平均粒径为40nm的二氧化硅粉体,凝胶网格沉淀法是一种制备纳米二氧化硅的简单的新方法,所得粉体粒径小,粒径分布窄,实验条件要求低,操作简便、易行,便于工业化生产。  相似文献   

9.
以五水硫酸铜和碳酸钠为原料,采用直接沉淀法研究了纳米碱式碳酸铜的制备,考察了反应温度、反应物的浓度对其粒径的影响。结果表明,当反应温度在45~75℃,反应浓度在1~2.5 mol/L时,可以制备出不同粒径的纳米碱式碳酸铜,其平均粒径范围为16~54 nm;纳米碱式碳酸铜的粒度随反应温度的升高而减小,随反应物浓度的增大而增大。  相似文献   

10.
杨桂芝 《当代化工》2012,(11):1182-1184
设计了以内水为主要原料的直接沉淀法生产超细氢氧化镁的工艺。首先考察了分散剂的种类和用量对产品性能的影响。在此基础上,系统研究了反应温度和反应时间对产品的收率、纯度、粒径及颗粒形态等影响,获得了直接沉淀法制备超细氢氧化镁的较佳反应条件。  相似文献   

11.
活性纳米ZnO的制备   总被引:6,自引:0,他引:6  
用成本低廉的锌焙砂为原料 ,通过直接沉淀法首先合成前驱物碱式碳酸锌 ,然后烘干分解得到活性纳米ZnO粉体。TG -DTA表明前驱物为碱式碳酸锌 ,XRD估测颗粒尺寸为 90nm ,产品气敏度为 17.8。  相似文献   

12.
王彦  薛永强  谢献娜 《广东化工》2011,38(1):1-2,25
不同粒度的纳米TiO2具有不同的用途。文章以硫酸钛为原料,尿素作沉淀剂,采用均匀沉淀法,研究了不同平均粒径纳米二氧化钛的制备工艺,讨论了工艺条件对其粒径的影响。研究结果表明:通过改变工艺条件,采用均匀沉淀法可制备出平均粒径范围为8~40nm的锐钛矿型纳米TiO2;在制备过程中,反应物浓度及配比、反应温度、煅烧温度等工艺参数对所制备粉体粒度都有不同程度的影响;纳米二氧化钛的粒度随反应物浓度的增加或反应温度的升高而减小,随煅烧温度的升高而增大。  相似文献   

13.
以氯化锌和碳酸钠为原料,通过均匀沉淀法制备纳米氧化锌。借助激光粒度分析仪及透射电镜等分析手段,探索制备工艺条件对纳米氧化锌粒径及形貌的影响规律。最佳工艺条件:锌离子(Zn2+)初始浓度为0.74 mol/L,碳酸根与锌离子浓度比[c(CO32-)/c(Zn2+)]为1.1,反应温度为90 ℃,反应时间为40 min,煅烧温度为600 ℃,煅烧时间为1 h。在此条件下制备纳米氧化锌颗粒形貌为球形,粒度均匀,粒径约为25 nm,二次粒径(D50)为549.9 nm,分散性好。该工艺条件为低成本工业化制备纳米氧化锌提供了基础数据。  相似文献   

14.
以六水氯化镁和碳酸铵为原料,通过改变温度、浓度、煅烧时间、表面活性剂等条件,用直接沉淀法制备氧化镁的前驱体,将前驱体在空气中焙烧制备氧化镁。用激光粒度仪测定了不同反应条件下产品的粒度分布,总结出不同反应条件与产品粒径的变化规律。用TG-DSC曲线确定了前驱体的分解温度,用X射线衍射仪(XRD)和扫描电镜 (SEM)对制备的产品进行表征。实验结果表明:在最佳反应条件下所得的产品的平均粒径为50 nm左右,其形貌为哑铃状。  相似文献   

15.
均匀沉淀法制备不同粒径的纳米硫化锌   总被引:2,自引:0,他引:2  
以硫代硫酸钠为硫源,采用均匀沉淀法研究了不同粒径纳米硫化锌的制备,讨论了反应温度、加热方式、反应物的浓度及物质的量比对其粒径的影响。研究结果表明:通过控制制备工艺条件,采用均匀沉淀法可以制备出平均粒径为4~24 nm、立方晶型的球形纳米硫化锌;制备工艺条件对纳米硫化锌的平均粒径有显著影响;加热方式对硫化锌的平均粒径影响较大,微波加热比水浴加热制备的硫化锌粒径小;此外,纳米硫化锌的粒径随着反应温度的增加、反应物浓度的增加、醋酸锌和硫代硫酸钠物质的量比的减小而减小。  相似文献   

16.
以硫酸锌和碳酸钠为原料,采用液相沉淀法制备了平均粒径为60 nm的氧化锌,通过正交试验得出制备纳米氧化锌的最佳工艺条件。用激光粒度分析、热重分析(TG-DTA)、X射线衍射分析(XRD)及扫描电子显微镜(SEM)等物理手段对纳米氧化锌的粒径分布、热性能、晶形结构及微观形貌进行表征。结果表明:产品颗粒大小均匀,分散性较好,平均粒径为60 nm,前驱体的煅烧温度为400 ℃,形貌呈球形或类球形。纳米氧化锌作光催化剂对酸性品红和甲基橙进行光催化的实验表明:纳米氧化锌的光催化能力较强,对酸性品红和甲基橙的降解率分别为98.75%和92.37%。  相似文献   

17.
为有效控制氨法制取纳米氧化锌的粒径,在蒸氨前将浸出原液用一定量的纯净水稀释,可增加初期沉淀生成的晶核数,使沉淀粒径更加均匀和细化,同时发现蒸氨残液不可以作为浸出原液的稀释剂回用.蒸氨的加热方式对纳米氧化锌的粒径也有影响,选择蒸汽直接加热,当溶液含锌质量浓度小于0.3 g/L时,所制取的纳米氧化锌粒径满足GB/T 19589-2004纳米氧化锌的要求 .  相似文献   

18.
田伟军  陈志刚 《广东化工》2012,39(16):62-63,70
研究了以锌泥为原料,采用二氧化碳法制备纳米级氧化锌的生产工艺,考察了乳化、合成、干燥、煅烧等工艺过程,结果表明:锌浆固液比为1/4,反应温度为80℃,反应压力为0.8MPa,搅拌速度1000μm,碳化时间90min,煅烧温度400℃,煅烧时间120min,得到的纳米级氧化锌产品粒径小于50m,比表面积在50m。幢以L,应用该工艺建成了一套1000t/a的生产装置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号