首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation behavior of NBD 200 Si3N4 containing 1 wt% MgO sintering aid was investigated in oxygen at 900°-1300°C. The oxide growth followed a parabolic rate law with an apparent activation energy of 260 kJ/mol. The oxide layers were enriched with sodium and magnesium because of outward diffusion of intergranular Na+ and Mg2+ cations in the ceramics. The 2-4 orders of magnitude higher oxidation rate for NBD 200 Si3N4 than for other Si3N4 ceramics with a similar amount of MgO could be attributed to the presence of sodium. The oxidation process was most likely rate limited by grain-boundary diffusion of Mg2+.  相似文献   

2.
Hot-isostatically-pressed, additive-free Si3N4 ceramics were implanted with aluminum at multi-energies and multidoses to achieve uniform implant concentrations at 1, 5, and 10 at.% to a depth of about 200 nm. The oxidation behavior of unimplanted and aluminum-implanted Si3N4 samples was investigated in 1 atm flowing oxygen entrained with 100 and 220 ppm NaNO3 vapor at 900–1100°C. Unimplanted Si3N4 exhibits a rapid, linear oxidation rate with an apparent activation energy of about 70 kJ/mol, independent of the sodium content in the gas phase. Oxides formed on the unimplanted samples are rough and are populated with cracks and pores. In contrast, aluminum-implanted Si3N4 shows a significantly reduced, parabolic oxidation rate with apparent activation energies in the range of 90–140 kJ/mol, depending on the sodium content as well as the implant concentration. The oxides formed on the implanted samples are glassy and mostly free from surface flaws. The alteration of the oxidation kinetics and mechanism of Si3N4 in a sodium-containing environment by aluminum implantation is a consequence of the effective modification of the properties of the sodium silicates through aluminum incorporation.  相似文献   

3.
Optical and electron microscopies are used to analyze the mechanism and kinetics of internal reduction of an Fe2+-doped magnesium aluminosilicate melt. Melt samples are heated to temperatures in the range of 1300°–1400°C under a flowing gas mixture of CO/CO2, which corresponds to a p O2 range of 1 × 10−13–4 × 10−13 atm. The melt experiences an internal reaction in which a dispersion of nanometer-scale iron-metal precipitates forms at an internal interface. The metal precipitates show no signs of coarsening within the samples; however, the crystals at the surface (which formed in the initial part of the reaction) do grow via vapor phase transport. The overall reaction is characterized by parabolic kinetics, which is indicative of chemical diffusion being the rate-limiting step. The diffusion of network-modifier divalent cations—particularly Mg2+ cations—is demonstrated to be the rate-limiting factor, and its diffusion coefficient is calculated to be ∼1 × 10−6 cm2/s within the temperature range of the experiments.  相似文献   

4.
Single crystals of oilivine, (Mg0.9Fe0.1)2SiO4, have been oxidized in air at temperatures between 700° and 1100°C for times from 0.5 to 100 h. Both an internal and an external oxidation layer developed. Transmission and analytical electron microscopy observations reveal that the internal oxidation layer is composed of precipitates of magnetite plus amorphous silica, which nucleated heterogeneously on dislocations and grew in an Fedepleted matrix of olivine. Rutherford backscattering spec-trometry (RBS) demonstrates that the thin external oxidation layer is free of Si; that is, it is made up of Mg-Fe oxide phases. Thus, the oxidation process is primarily controlled by diffusion of Fe2+ and Mg2+ ions toward the surface with Si4+ and O2- remaining largely immobile. The kinetics of oxidation, as determined from RBS analyses of the external oxidation layer, are parabolic with an activation energy of 140 kJ/mol. Although this activation energy is lower than that reported for self-diffusion of Mg in Mg2SiO4, the diffusivity calculated from the reaction rate constant is in good agreement with published values for lattice diffusion of Mg in the limited temperature range in which data overlap. However, the rate of accumulation of Fe in the external layer is more rapid than expected for lattice diffusion, indicating that the transport of Fe is dominated by short-circuit diffusion along the precipitate complexes which decorate dislocations.  相似文献   

5.
The oxidation process of Si2N2O, prepared by a hot isostatic pressing technique, has been studied by the thermogravimetric method. The oxidation has been performed in oxygen for 20 h in the temperature range 1300° to 1600°C, producing oxide scales of amorphous SiO2 and α-cristobalite. The weight gain for T 1350°C does not begin to follow a parabolic rate law, until a certain time, t 0. The A 0 parameter in the parabolic rate law, (Δ w / A 0)2= K p t + B , represents the cross section area, A , through which the oxygen diffuses; in the derivation of this law A is assumed to be constant during the experiment. If crystallization occurs during the oxidation process, A will decrease with time. A function, A ( t ), describing the time dependence, has been developed and incorporated into the parabolic rate law, yielding a new rate law, which reads Δ W/A 0= a arctan √ bt + c √ t . This new rate law is valid in the time interval t < t 0, whereas, for t > t 0, the oxidation process follows the equation (Δ w/A 0)2= K °p t + B 0. The relation of the latter equation to the common parabolic rate law is described. All of the oxidation curves are described by these equations. The activation energy of the oxygen diffusion (and of the oxidation ( K p)) is found to be 245 ± 25 kJ/mol, which is consistent with literature values reported for oxygen diffusion.  相似文献   

6.
Results of steam oxidation measurements of UO2 cylinders from 885° to 1835°C may be expressed by the equations:

for the parabolic rate of oxidation and

for the chemical oxygen diffusion coefficient. Kp and Dc, obtained from thermobalance measurements to 1500° C and from pre- and post-test weights for the higher temperatures, were independent of sample weight from 10 to 149 g and of surfaceto-volume ratios from 2.34 to 18.74 cm-1. Dc varied as the 0.65 power of the final average excess oxygen (x in UO2+x). The oxidation was accompanied by considerable grain growth. A bulk diffusion mechanism was verified by analyses of partially oxidized samples using both X-ray diffraction and analytical chemistry; an oxygen gradient was demonstrated by each technique.  相似文献   

7.
The effect of attrition milling on the solid-state oxidation of aluminum powder is important for the reaction-bonded aluminum oxide process. Attrition milling increased the surface area to 14.4 and 20.2 m2/g versus 1.2 m2/g for unmilled powder and smeared the Al particles, and the surface was hydrolyzed to form bayerite and boehmite. Upon heating the hydroxides decompose to form an 11–13 nm thick amorphous plus γ-Al2O3 layer which subsequently retards oxidation kinetics. The oxidation per unit area decreases for the higher surface area powders at temperatures below the critical temperature but the total oxidation of the milled powder is ∼70% versus ∼9% for the as-received powder because of the higher surface area. The critical temperature depends on Al particle surface characteristics and is defined as the transition temperature above which the initial rate of oxidation is linear, not parabolic. Above the critical temperature the oxidation per unit area decreases significantly. In addition, linear oxidation occurs faster than parabolic oxidation and thus the initial fast oxidation kinetics (i.e., linear) can cause thermal runaway during oxidation. Therefore, oxidation below the critical temperature is essential to maximize solid-state oxidation and to prevent thermal runaway. The critical temperatures for the as-received (1.24 m2/g), the 6 h (14.4 m2/g), and 8 h (20.2 m2/g) attrition-milled Al powders were 500°, 475°, and 500°C, respectively. A model for oxidation during the parabolic and linear oxidation stages is presented.  相似文献   

8.
Partial equilibrium phase diagrams for the systems MgF2-MgO, MgF2-CaO, and MgF2-Al2O3 were determined by differential thermal analysis. Simple eutectics were observed at 8.5 mol% MgO and 1228°± 3°C in the MgF2-MgO system, at 7.5 mol% CaO and 1208°± 3°C in the MgF2-CaO system, and at 2.5 mol% Al2O3 and 1250°± 3°C in the MgF2-Al2O3 system. On the basis of agreements between the activities calculated by the Clausius-Clapeyron equation and Temkin's model using the present data, the eutectic melt consists of Mg2+, F-, and O2- ions in the MgF2-MgO system; Mg2+, Ca2+, F-, and O2- ions in the MgF2-CaO system; and Mg2+, Al3+, F-, and AlO ions in the MgF2-Al2O3 system. Well-defined long needles of MgO in the MgF2-MgO system, less defined needles of CaO in the MgF2-CaO system, and Al2O3 grains in the MgF2-Al2O3 system were observed by optical microscopy.  相似文献   

9.
The ordered domain structures in Pb(Mg1/3Nb2/3)O3(PMN) and Pb1– x La x (Mg1/3Nb2/3)O3 are identified using high-resolution transmission electron microscopy (HRTEM) and nanobeam diffractometry (NBD). The chemical compositions in the ordered domains and in the disordered matrices are also acquired using energy-dispersive spectroscopy (EDS). The best matching computer-simulated HRTEM image has a Mg2+/Nb2+ ratio of return ½. There is no obvious chemical composition difference between the ordered domains and the disordered matrices. The number of the normalized total positive valence electrons remains almost constant in the ordered domains and in the disordered matrices for all the samples. The reason for the growth of the ordered domains in La-doped PMN also is discussed.  相似文献   

10.
The effects of the dopants, Mg2+, Sr2+, Sc3+, Yb3+, Gd3+, La3+, Ti4+, Zr4+, Ce4+, and Nb5+, on the grain boundary mobility of dense Y2O3 have been investigated from 1500° to 1650°C. Parabolic grain growth has been observed in all cases over a grain size from 0.31 to 12.5 μm. Together with atmospheric effects, the results suggest that interstitial transport is the rate-limiting step for diffusive processes in Y2O3, which is also the case in CeO2. The effect of solute drag cannot be ascertained but the anomalous effect of undersized dopants (Ti and Nb) on diffusion enhancement, previously reported in CeO2, is again confirmed. Indications of very large binding energies between aliovalent dopants and oxygen defects are also observed. Overall, the most effective grain growth inhibitor is Zr4+, while the most potent grain growth promoter is Sr2+, both at 1.0% concentration.  相似文献   

11.
This paper details the investigation of the quality factor ( Q ), dielectric permittivity (ɛr) and temperature coefficient of resonant frequency (τf) of the TE01δ mode of the columbite binary niobate ceramics, with the formula MNb2O6 where M=2+ cation, in relation to their degree of sintering, microstructure and phase composition. The ceramics were made from a mixed oxide preparative route and fired over a range of temperatures from 800° to 1400°C, and most formed the columbite structure. A comprehensive study was made of the niobates containing the transition metal cations M=Mn2+, Co2+, Ni2+, Cu2+, and Zn2+, and the group II metal cations M=Mg2+, Ca2+, Sr2+, and Ba2+. All columbite niobates were found to have ɛr between 17 and 22 and negative τf values between –45 and –76 ppm/°C, and ZnNb2O6, MgNb2O6, CaNb2O6, and CoNb2O6 had high Q f values of 84 500, 79 600, 49 600, and 41 700 GHz, respectively. The Q f of MgNb2O6 was found to rise to over 95 000 GHz when heated at 1300°C for 50 h.  相似文献   

12.
The compressive creep behavior and oxidation resistance of an Si3N4/Y2Si2O7 material (0.85Si3N4+0.10SiO2+0.05Y2O3) were determined at 1400°C. Creep re sistance was superior to that of other Si3N4 materials and was significantly in creased by a preoxidation treatment (1600°C /120 h). An apparent parabolic rate constant of 4.2 × 10−11 kg2·m-4·s−1 indicates excellent oxidation resistance.  相似文献   

13.
The wettability of binary and ternary glasses belonging to SiO2–Al2O3–ZrO2 diagram has been studied using the sessile drop technique at 1750° and 1800°C. The ternary SiO2–Al2O3–ZrO2 (90–5–5 wt%) glass has proved to be well appropriated as a molybdenum oxidation barrier coating. The addition of 5 wt% of MoO2 slightly improves its wettablity at higher temperatures without affecting its oxidation barrier properties. The Mo comes into the glass network as a mixture of Mo5+, Mo4+, and Mo6+. After oxidation at 1000°C in oxygen atmosphere, the molybdenum remains in the glass network as Mo6+.  相似文献   

14.
The growth of nickel-aluminum spinel, NiAl2O4, in diffusion couples of polycrystalline Al2O3 and NiO was investigated between 1200° and 1500°C. The growth kinetics for the spinel layer obeyed a parabolic rate law in this temperature range. Marker experiments showed that the spinel layer formed by counterdiffusion of nickel and aluminum ions. Comparison of experimental and theoretical values of the parabolic rate constants suggests that the diffusion of aluminum ions through the spinel layer is rate controlling.  相似文献   

15.
The oxidation behavior of SiCN–ZrO2 fibers and SiCN at 1350°C are compared. The as-measured parabolic rate constants for the two materials are nearly the same (15–20 × 10−18 m2/s). However, after implementing a correction for the difference in the compositions, the rate constant is 13.2 × 10−18 m2/s for the fiber, and 29.4 × 10−18 m2/s for SiCN. The lower oxidation rate of the fiber is ascribed to the lower carbon content in the fiber material.  相似文献   

16.
The effects of the dopants, Mg2+, Ca2+, Sr2+, Sc3+, Yb3+, Y3+, Gd3+, La3+, Ti4+, Zr4+, and Nb5+, on the grain boundary mobility of dense CeO2 have been investigated from 1270° to 1420°C. Parabolic grain growth has been observed in all instances. Together with atmospheric effects, the results support the mechanism of cation interstitial transport being the rate-limiting step. A strong solute drag effect has been demonstrated for diffusion-enhancing dopants such as Mg2+ and Ca2+, which, at high concentrations, can nevertheless suppress grain boundary mobility. Severely undersized dopants (Mg, Sc, Ti, and Nb) have a tendency to markedly enhance grain boundary mobility, probably due to the large distortion of the surrounding lattice that apparently facilitates defect migration. Overall, the most effective grain growth inhibitor at 1.0 % doping is Y3+, while the most potent grain growth promoter is either Mg2+ (e.g., 0.1%) or Sc3+ at high concentration (greater than 1.0%).  相似文献   

17.
Interfacial reaction kinetics between Ag and ceramic-filled glass (CFG) substrate, containing borosilicate glass, high-silica glass, and alumina, has been investigated at 850°–925°C in different atmospheres. No chemical reaction at the interface of Ag/CFG is found when firing takes place in N2 or N2+ 1% H2. Fired in air, however, an interfacial reaction zone is formed at the interface of Ag/CFG with Ag+ ion diffusing from silver and Al3+ ion dissolving from CFG, and both ions are always coupled together in the reaction zone. Microstructural and chemical analyses show that the reaction zone consists of two distinct layers; one is homogeneous, and the other, heterogeneous. The homogeneous layer, which is adjacent to Ag, is uniform in microstructure with a composition rich in Ag+ and Al3+. The heterogeneous layer is not uniform in microstructure with Si-rich and Ag–Al-rich phases. The reaction zone moves toward CFG with time, forming a heterogeneous layer first and then converting into a homogenous layer when diffusion of Ag+ ion into the CFG becomes significant. The growth kinetics for the homogeneous layer follows a linear rate equation, whereas the heterogeneous layer, a parabolic rate equation. Activation analyses suggest that the formation of the homogeneous layer is controlled by the combination of breakage and formation of M–O bonds, but the heterogeneous layer, by the diffusion of Ag+ ion in the BSG.  相似文献   

18.
The long-term high-temperature cyclic oxidation (100 cycles, 104 h, 1500°C) of a Si3N4 material and a Si3N4/MoSi2 composite, both fabricated with Y2O3 as a sintering additive, was studied. Both materials exhibited similar oxidation rates because of surface SiO2 formation described by an almost parabolic law and a total weight gain of 3–4 mg/cm2 after 104 h. As a consequence of oxidation processes in the bulk, microstructural damage was found in the Si3N4 material. These effects were not observed in the composite. The remarkable microstructural stability observed offers the high potential of Si3N4/MoSi2 composites for long-term structural applications at elevated temperatures up to 1500°C.  相似文献   

19.
Oxidation of Polymer-Derived SiAlCN Ceramics   总被引:2,自引:0,他引:2  
The oxidation behavior of polymer-derived amorphous SiAlCNs was studied in the temperature range of 900°–1200°C. The results revealed that while at 900°C the oxidation of the SiAlCNs follows typical parabolic kinetics, at higher temperatures the oxidation rates of the materials decrease with annealing time. Long-term oxidation rate of the SiAlCNs is much lower than the lowest values reported for chemical vapor deposition of SiC and Si3N4. Structures of the oxide scales were studied using solid-state nuclear magnetic resonance. We proposed that oxide scales formed for the SiAlCNs possess a unique network structure of the oxide scale in which aluminum atoms block the path of oxygen diffusion, thus lowering the oxidation rates. Such a unique structure was likely formed gradually with annealing time, leading to a continuous decrease in oxidation rate.  相似文献   

20.
Oxidation studies of hot-pressed RE-α-sialons, RE x -Si12-4.5 x Al4.5 x O1.5 x N16-1.5 x (with x = 0.40 for RE = Nd, Sm, Yb; and x = 0.48 for RE = Y) were carried out in oxygen in a TG apparatus for ca. 20 h. Very good oxidation resistance was found for the Yb-doped samples, with parabolic rate constants K p similar/congruent 0.09 10-6-3 10-6 mg2cm-4s-1 in the temperature range 1250-1350°C. The promising performance of this material was corroborated by long-term oxidation experiments (5 days) in air at 1350°C. Although the oxidation kinetics can be described by simple equations related to the parabolic rate law (e.g., the arctan equation, Δ W / A 0=α arctan bt + c t ), the oxidation process in these materials is likely to be complex. The significantly lower oxidation resistance of the RE = Nd, Sm doped α-sialons, especially at higher temperatures, is related to the formation of melilite, RE2Si3− y Al y O3+ y N4− y ( y ∼ 1), in these systems. The melilite phase is also responsible for the thermal instability of the Nd- and Sm-α-sialons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号