首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Crystalline solubility relations in the system MgO-Mg2SiO4MgAl2O4 (periclase-forsterite-spinel) were studied using coprecipitated gels as starting materials. The substitution 2Al = Mg + Si was investigated along the join Mg2SiO4-Mg-Al2O4,. At 1720°C the maximum crystalline solution in forsterite is about 0.5 mole % MgAI2O4, and in spinel it is slightly more than 5.0 mole % Mg2SiO4. The solubility of MgO in forsterite was 0.5 mole % at 1860°C, whereas more than 11 mole % Mg2SiO4 can be dissolved in the periclase structure at this temperature. Ternary crystalline solution exists in the periclase structure to a composition of Mg0.853Al0.063Si0.026O at 1710°C.  相似文献   

2.
New data obtained on the join Ca2SiO4-CaMgSiO4 established a limit of crystalline solubility of Mg in α-Ca2SiO4 corresponding to the composition Ca1.90Mg0.10SiO4 at 1575°C. The α-α'Ca2SiO4 inversion temperature is lowered from 1447° to 1400°C by Mg substitution in the lattice. α'-Ca2SiO4 takes Mg into its lattice up to the composition Ca1.94Mg0.06SiO4 at 1400°C and to Ca1.96Mg0.04SiO4 at 900°C. A new phase (T) reported previously by Gutt, with the approximate composition Ca1.70Mg0.30SiO4, was stable between 979° and 1381°C, and should be stable at liquidus temperatures in multicomponent systems involving CaO–MgO–SiO2.  相似文献   

3.
Phase relation studies of Si3N1, SiO2, and MgO have established three important subsolidus tie lines, viz. Si3N4-MgO, Si3N4-Mg2SiO4, and Si2N2O-Mg2SiO4 for nonoxidizing fabrication conditions. Strength measurements at 1400°C show that optimum strengths are obtained for compositions approaching the Si3N4-MgO and Si3N4-Si2N2O tie lines and that inferior strengths are obtained for compositions approaching the Si3N4-Mg2SiO4 tie line. Oxidation measurements at 1375°C show that the oxidation kinetics depend on the content of MgO and Mg2SiO4 phases. Optimum oxidation resistance is observed for compositions approaching the Si3N4-Si2N2O tie line. Strength and oxidation results are discussed with regard to phase equilibrium considerations.  相似文献   

4.
Physical and microwave dielectric properties of complex perovskite Ba(Mg1/3Ta2/3)O3 ceramics have been investigated as a function of the amount of BaWO4 in the temperature range from 20° to 80°C at 10.5 GHz. Up to 0.05 mol BaWO4 addition, the lattice constant ratio ( c/a ), ordering parameter, apparent density, and unloaded Q all increase, due to the increase in the substitution of Ta5+ ions of Ba(Mg1/3Ta2/3)O3 by W6+ ions from the melted BaWO4 at above 1430°C. With further addition of BaWO4, the unloaded Q decreases, due to an increase of the BaWO4 phase. The temperature coefficient of resonant frequency (TCF) can be controlled by the volume mixture rule of Ba(Mg1/3Ta2/3)O3 and BaWO4. When 0.09 mol BaWO4 is added, TCF becomes 0 ppm/°C.  相似文献   

5.
MgSiO3 ceramics were synthesized and their microwave dielectric properties were investigated. The Mg2SiO4 phase was formed at temperatures lower than 1200°C, while the orthorhombic MgSiO3 phase started to form by the reaction of SiO2 and Mg2SiO4 in the specimen fired at 1200°C. The structure of the MgSiO3 ceramics was transformed from orthorhombic to monoclinic when the sintering temperature exceeded 1400°C. A dense microstructure was developed for the specimens sintered at above 1350°C. The excellent microwave dielectric properties of ɛr=6.7, Q × f =121 200 GHz, and τf=−17 ppm/°C were obtained from the MgSiO3 ceramics sintered at 1380°C for 13 h.  相似文献   

6.
A novel Mg2Zr5O12-based coating on magnesium was formed by microarc oxidation (MAO) in a K2ZrF6-containing electrolyte. The structure of the coating was examined by X-ray diffraction using the grazing angle method, scanning electron microscopy, and transmission electron microscopy. The friction and wear properties of the MAO-coated and -uncoated Mg samples were evaluated in a ball-on-disk testing system. The corrosion resistance of the coating in a 3.5% NaCl solution was investigated by the potentiodynamic polarization test. The coating is relatively dense and composed of a Mg2Zr5O12–ZrO2–MgF2 inner layer and a nanocrystalline Mg2Zr5O12 outer layer with a maximum hardness of 1240 Hv. The friction coefficient of the coating against Si3N4 is 0.35 under a dry-sliding condition. The corrosion resistance of the magnesium substrate is improved considerably by MAO treatment. The corrosion potential of the Mg2Zr5O12-coated sample is −1.43 V with a current density as low as 7.06 × 10−8 A/cm2. It is expected that the coating can considerably protect magnesium from wear and corrosion.  相似文献   

7.
Schairer's study (1954) on phase relations in the system KalSi2O6–Mg2SiO4–SiO2 was extended to include the system KalSiO4–Mg2SiO4–KalSi2O6. It is shown that this join is ternary; however, the relatively high vapor pressure of the condensed phases prohibits study by the usual quenching techniques. The apparent intersection of the (KalSiO4–Mg2SiO4–SiO3) join with the primary phase volume of spinel is attributed to loss of the alkali-silicate constituents by vapor transport. This results in the effective bulk composition being moved away from this join toward the primary phase volume of spinel in the system K2O–MgO–Al2O3–SiO2.  相似文献   

8.
Steady-state creep experiments were performed on hot-pressed polycrystalline MgO doped with Fe. Dead-load 4-point bend creep tests were conducted at stresses of 26 to 270 kg/cm2, at temperatures of 1250° to 1450°C, in O2 partial pressures of 1 to 10−9 atm, on specimens with grain sizes of 10 to 65 μm. Viscous steady-state creep was always observed when the grain size was stable. Experiments at variable P O2's and temperatures were used to identify regimes of high (117 ± 10 kcal/mol) and low (81 ± 5 kcal/mol) activation energy. In the latter, creep rates were nearly independent of Fe dopant concentration and P O2, whereas in the former creep rates were enhanced by increasing P O2's and Fe dopant levels. The high- and low-activation-energy regimes were interpreted as diffusional creep controlled primarily by Mg lattice diffusion and O grain-boundary diffusion, respectively.  相似文献   

9.
Equilibrium partial pressures of SiF4 were measured for the reactions 2SiO2( c )+2BeF2( d )⇋SiF4( g )+Be2SiO4( c ) (log P siF4(mm) = [8.790 - 7620/ T ] ±0.06(500°–640°C)) and Be2SiO4( c ) +2BeF2( d )⇋SiF4( g ) +4BeO( c )(log P siF4(mm) = [9.530–9400/T] ±0.04 (700°–780°C)), wherein BeF2 was present in solution with LiF as molten Li2BeF4. The solubility of SiF4 was low (∼0.04 mol kg-1 atm-1) in the melt. The results for the first equilibrium were combined with available thermochemical data to calculate improved Δ Hf and Δ Gf values for phenacite (–497.57 ±2.2 and –470.22±2.2 kcal, respectively, at 298°K). The few measurements above 700°C for the second equilibrium are consistent with the temperature of the subsolidus decomposition of phenacite to BeO and SiO2 and with the heat of this decomposition as determined by Holm and Kleppa. Below 700°C, the pressures of SiF4 generated showed an increasing positive deviation from the expression given for the equilibrium involving Be2SiO4 and BeO. This deviation might have been caused by the formation of an unidentified phase below 700°C which replaced the BeO; it more likely resulted from a metastable equilibrium involving BeO and SiO2.  相似文献   

10.
The reciprocal salt pair Sr2SiO4-Sr2GeO4-Ba2GeO4-Ba2SiO4 was investigated using X-ray powder diffraction and DTA. Unlimited solubility in the low-K2SO4 structure type (α') occurs throughout the system above 85°C. The nonlinear changes of some lattice constants of the solid solutions are discussed. A stable monoclinic low-temperature (β) form of Sr2SiO4 was found which converts reversibly to the high-temperature α'-modification at 85°C. The enthalpy of the β-α' transition is 51 cal/mol. In the reciprocal salt pair the β-form solid solutions occur in a very narrow region below 85°C.  相似文献   

11.
The cation diffusivities in the lattice and along dislocations and grain boundaries have been measured on sintered polycrysals of Cr2O3; and Cr2Cr2O3-0.09 wt% Y2O3 at1100°C and at the pO2 corresponding to that of Cr/Cr2O3 equilibrium at that temperature. Results for lattice and dislocation diffusivities in pure Cr2O3 are in good agreement with previous work. The present results indicate that yttrium additions have negligible effect on lattice and dislocation diffusion. However, grain-boundary diffusion in pure Cr2O3 is significantly slower than grain-boundary diffusion in Cr2O3-0.09 wt% Y2O3. The results are discussed in terms of their implications for the reactive-element effect in high-temperature oxidation of chromium-containing alloys.  相似文献   

12.
Samarium ions (Sm2+) incorporated into aluminosilicate glasses by a sol-gel process showed persistent spectral hole burning at room temperature. Gels of the system Na2O-Al2O3SiO2 synthesized by the hydrolysis of Si(OC2H5)4, Al(OC4H9)3, CH3 COONa, and SmCl3·6H2O were heated in air at 500°C, then reacted with H2 gas to form Sm2+ ions. Whereas Al3+ ions effectively dispersed the Sm3+ ions in the glass structure, Na+ ions were not effective. The Al2O3-SiO2 glasses proved appropriate for reacting the Sm3+ ions with H2 gas and exhibited the intense photoluminescence of Sm2+ ions. The reaction of Sm3+ ions with H2 in the Al2O2-SiO2 glasses was determined by first-order kinetics, and the activation energy equaled 95 kJ/mol. At 800°C, the maximum photoluminescence of the Sm2+ ions was achieved within 20 min.  相似文献   

13.
Anion self-diffusion coefficients normal to (1102) were obtained for single-crystal Al2O3 in a 1.3 × 10 3 N/m2 (10−5 torr) vacuum at 1585° to 1840°C. Tracer was supplied from an initial 650 to 1300 A Al218O3 layer produced by the oxidation of vapor-deposited Al metal films in an 18O2 atmosphere at 520°C. Concentration gradients extended over depths of 3000 to 5000 A and were measured by mass spectrometry of material sputtered from the samples with a beam of Ar+ ions. Crystals which had not been preannealed to remove surface damage displayed enhanced diffusion. Diffusion coefficients from preannealed crystals may be described by D0 =6.4×105cm2/s, with an activation energy of 188 ± 7 kcal/mol. The diffusion is interpreted as an extrinsic vacancy mechanism.  相似文献   

14.
Phase relations in the quasi-ternary system MgO-V2O3-VO2 at 1200°C were studied using the quenching technique under controlled O2 atmospheres. A new phase of a type z VO y Mg2− x V1+ x O4 (0< x <1, y ≥1.5, z >0) was found with a compositional region along the MgV2O4-Mg2VO4 join. Equilibrium P O 2 observed for Mg2− x V1+ x O4 is quite different from that for V n O2 n -1 with an equal ratio of V3+/V4+, corresponding to the V3+ stabilities in two types of compounds. Thus, the phase relations in the ternary system were constructed on a conventional triaxial diagram as a function of P O2.  相似文献   

15.
0.4Pb(Mg1/3Nb2/3)O3–0.3Pb(Mg1/2W1/2)O3–0.3PbTiO3+ x MgO ( x = 0 to 0.04) were prepared by a metal alkoxide method. The percent of perovskite phase of the calcined powders increased with increased calcination temperatures. About 89% of perovskite phase was obtained at 1050°C. The dielectric constant of the pellets fired at 1100°C was increased by the addition of 10 wt% excess Mg(OC2H5)2 and had a maximum value of 7532 at 1 kHz.  相似文献   

16.
The microstructure and microwave dielectric properties of a (1− x )(Mg0.95Ni0.05)TiO3− x Ca0.6La0.8/3TiO3 ceramics system have been investigated. The system was prepared using a conventional solid-state ceramic route. In order to produce a temperature-stable material, Ca0.6La0.8/3TiO3 was added for a near-zero temperature coefficient (τf). With partial replacement of Mg2+ by Ni2+, the dielectric properties of the (1− x )(Mg0.95Ni0.05)TiO3− x Ca0.6La0.8/3TiO3 ceramics can be promoted. The microwave dielectric properties are strongly correlated with the sintering temperature and the composition. An excellent Q × f value of 118,000 GHz can be obtained for the system with x =0.9 at 1325°C. For practical application, a dielectric constant (ɛr) of 24.61, a Q × f value of 102,000 GHz, and a temperature coefficient of resonant frequency (τf) of −3.6 ppm/°C for 0.85(Mg0.95Ni0.05)TiO3−0.15Ca0.6La0.8/3TiO3 at 1325°C are proposed. A parallel-coupled line band-pass filter is designed and simulated using the proposed dielectric to study its performance.  相似文献   

17.
We investigated the conditions for low-temperature synthesis of ZrC fine powder from ZrO2–Mg–CH4. The synthesis utilizes a thermite-type reaction, with Mg as the reducing agent, and a reaction between Mg and CH4 gas as a carbon source. The Mg/ZrO2 molar ratio as well as the heating rate were varied. Because C can be continuously fed into the reaction group by the cyclic reaction of Mg through the formation and decomposition of Mg2C3 (2Mg + 3CH4→ Mg2C3+ 6H2→ 2Mg + 3C), a molar ratio of 2.2 for Mg/ZrO2 was sufficient for the synthesis of single-phase ZrC. ZrC powders were synthesized under the following conditions: Mg/ZrO2 molar ratio = 2.2, heating rate = 20°C/min, and temperature maintained at 750°C for 30 min. The amount of reaction heat produced in the reduction reaction of ZrO2 by Mg depended on the Mg/ZrO2 molar ratio, specifically, the amount of ZrO2 contained. Moreover, the cyclic reaction of Mg-Mg2C3–Mg was influenced by the amount of reaction heat described above and by the heating rate. The ZrC fine powder showed little aggregation and high dispersibility.  相似文献   

18.
The thermal expansion of Y2SiO5 crystals has been measured for the principal crystallographic directions and two orthogonal directions in the (010) plane in the temperature range 25° to 200°C. This monoclinic crystal has strongly anisotropic expansions with coefficients which range from 0.6 × 10−6/°C for [100] to 11.4 × 10−6/°C for [001]. Third-order polynomials have been calculated from the expansion curves. Data for the β angle and cell volume as a function of temperature are also given. The thermal expansion of Y2SiO5 crystals is not affected by doping with 5% Tb.  相似文献   

19.
The green emitting Ca2SiO4:Eu2+ (C2S:Eu) phosphors were synthesized by the polymeric precursor process (Pechini-type), and the effects of calcination temperature and europium (Eu) doping concentration on the luminescent properties were investigated. The crystalline β-C2S was obtained in the calcination temperature of 1100°–1400°C, and Eu was reduced into Eu2+ by annealing in 5% H2/N2 atmosphere. The obtained C2S:Eu2+ phosphors exhibited a strong emission at 504 nm under the excitation of λexc=350 nm. The highest photoluminescence (PL) intensity was observed in the C2S:Eu2+ phosphors either calcined at 1300°C or doped with 3 mol% Eu. The obtained PL properties were discussed in terms of crystal structure, particle size and shape, surface roughness, and effect of concentration quenching.  相似文献   

20.
The formation process and microwave dielectric properties of the Mg2V2O7 ceramics were investigated. The MgV2O6 phase that was formed at around 450°C interacted with remnant MgO above 590°C to form a homogeneous monoclinic Mg2V2O7 phase. Finally, this monoclinic Mg2V2O7 phase was changed to a triclinic Mg2V2O7 phase for the specimen fired at 800°C. Sintering at 950°C for more than 5 h produced high-density triclinic Mg2V2O7 ceramics. In particular, the Mg2V2O7 ceramics sintered at 950°C for 10 h exhibited the good microwave dielectric properties of ɛr=10.5, Q × f =58 275 GHz, and τf=−26.9 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号