首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
一个电压接近1V 10ppm/℃带曲率补偿的CMOS带隙基准源   总被引:1,自引:1,他引:0  
介绍了一个带曲率补偿的低电压带隙基准源.由于采用电流模结构,带隙基准源的最低电源电压为900mV.通过VEB线性化补偿技术,带隙基准源在0到150℃的温度范围内的温度系数为10ppm/℃.在电源电压为1.1V时,电源电流为43μA,低频的PSRR为55dB.该带隙基准源已通过UMC 0.18μm混合信号工艺验证,芯片面积为0.186mm2.  相似文献   

2.
介绍了一个新型电流模带隙基准源,该带隙基准源的输出基准可以设计为任意大于硅材料的带隙电压(1.25V)的电压,避免在应用中使用运算放大器进行基准电压放大. 同时该结构消除了传统电流模带隙基准源的系统失调. 该带隙基准源已通过UMC 0.18μm混合信号工艺验证. 在1.6V电源电压下,该带隙基准源输出145V的基准电压,同时消耗27μA的电流. 在不采用曲率补偿的情况下,输出基准的温度系数在30℃ 到150℃的温度范围内可以达到23ppm/℃. 在电源电压从1.6变化到3V的情况下,带隙基准源的输入电压调整率为2.1mV/V. 该带隙基准源在低频(10Hz)的电源电压抑制比为40dB. 芯片面积(不包括Pads)为0.088mm2.  相似文献   

3.
介绍了一个新型电流模带隙基准源,该带隙基准源的输出基准可以设计为任意大于硅材料的带隙电压(1.25V)的电压,避免在应用中使用运算放大器进行基准电压放大.同时该结构消除了传统电流模带隙基准源的系统失调.该带隙基准源已通过UMC 0.18μm混合信号工艺验证.在1.6V电源电压下,该带隙基准源输出1.45V的基准电压,同时消耗27μA的电流.在不采用曲率补偿的情况下,输出基准的温度系数在30℃到150℃的温度范围内可以达到23ppm/℃.在电源电压从1.6变化到3V的情况下,带隙基准源的输入电压调整率为2.1mV/V.该带隙基准源在低频(10Hz)的电源电压抑制比为40dB.芯片面积(不包括Pads)为0.088mm2.  相似文献   

4.
李凯  周云  蒋亚东 《现代电子技术》2012,35(4):145-147,151
设计了一种带温度补偿的无运放低压带隙基准电路。提出了同时产生带隙基准电压源和基准电流源的技术,通过改进带隙基准电路中的带隙负载结构以及基准核心电路,基准电压和基准电流可以分别进行温度补偿。在0.5μmCMOS N阱工艺条件下,采用spectre进行模拟验证。仿真结果表明,在3.3V条件下,在-20~100℃范围内,带隙基准电压源和基准电流源的温度系数分别为35.6ppm/℃和37.8ppm/℃,直流时的电源抑制比为-68dB,基准源电路的供电电压范围为2.2~4.5V。  相似文献   

5.
提出了一种新型电流模式的带隙基准电压源结构,与传统带隙基准源不同,通过电流模式高阶曲率补偿技术,消除了高阶温度系数对基准电压的影响,得到一个与温度相关性较小的基准电压.电路采用Chartered 0.35μm工艺进行设计,仿真验证结果表明,在-40℃~125℃温度范围内,温度系数为7.25×10-6/℃,基准电压平均值为1.114 V,电源抑制比为-89.28 dB.  相似文献   

6.
为了改善传统带隙基准中运放输入失调影响电压精度和无运放带隙基准电源抑制差的问题,设计了一款基于0.35μm BCD工艺的自偏置无运放带隙基准电路。提出的带隙基准源区别于传统运放箝位,通过负反馈网络输出稳定的基准电压,使其不再受运算放大器输入失调电压的影响;在负反馈环路与共源共栅电流镜的共同作用下,增强了输出基准的抗干扰能力,使得电源抑制能力得到了保证;同时采用指数曲率补偿技术,使得所设计的带隙基准源在宽电压范围内有良好的温度特性;且采用自偏置的方式,降低了静态电流。仿真结果表明,在5 V电源电压下,输出带隙基准电压为1.271 V,在-40~150℃工作温度范围内,温度系数为5.46×10-6/℃,电源抑制比为-87 dB@DC,静态电流仅为2.3μA。该设计尤其适用于低功耗电源管理芯片。  相似文献   

7.
一种新型指数补偿BICMOS带隙基准源   总被引:1,自引:1,他引:0  
在分析了带隙基准的指数曲率补偿原理的基础上,设计了一个低功耗、低温度系数、高电源抑制比的新型BICMOS带隙基准源电路.该电路基于0.6μm BICMOS工艺进行设计、仿真和实现.仿真结果表明,该带隙基准源在5V电源电压下,电源电流为50μA;温度变化范围从-40℃~110℃时,温度系数为2ppm/℃;低频电源抑制比为-105dB;负载从空载到驱动1k电阻时调整率为0.6mV.  相似文献   

8.
根据带隙基准的基本原理,结合含三条支路负反馈的电流源,设计了一种高阶补偿的带隙基准源电路。实现了对温度的2阶补偿和3阶补偿,获得了一种高电源抑制比、低温漂、不受电源变化影响的电压基准源。设计采用0.35μm CMOS工艺,仿真结果表明,在-40℃~125℃温度范围内,输出电压的温度系数为7.70×10-7/℃,在1kHz时,电源抑制比为-82.3dB。  相似文献   

9.
针对传统CMOS带隙电压基准源电路电源电压较高,基准电压输出范围有限等问题,通过增加启动电路,并采用共源共栅结构的PTAT电流产生电路,设计了一种高精度、低温漂、与电源无关的具有稳定电压输出特性的带隙电压源.基于0.5μm高压BiCMOS工艺对电路进行了仿真,结果表明,在-40℃~85℃范围内,该带隙基准电路的温度系数为7ppm/℃,室温下的带隙基准电压为1.215 V.  相似文献   

10.
基于CSMC 0.5μm CMOS工艺,设计了一种具有低温度系数、带2阶补偿的带隙基准电压源.在传统放大器反馈结构带隙基准源的基础上,利用MOS器件的“饱和电流与过驱动电压成平方关系”产生2阶补偿量,对传统的带隙基准进行高阶补偿.具有电路实现简单,容易添加到传统带隙基准电路的优点.仿真结果表明,设计的基准电压源在5V电源电压下功耗为860 μW,最低工作电压为1.24 V,在-50℃~125℃的温度范围内获得了1.42×10-5/℃的温度系数,低频时的电源抑制比达到-86.3 dB.  相似文献   

11.
提出了一种高精度带隙基准电压源电路,通过补偿其输出电压所经过的三极管的基极电流获得精确的镜像电流源.设计得到了在-20~+80℃温度范围内温度系数为3×10-6/℃和-85dB的电源电压抑制比的带隙基准电压源电路.该电路采用台积电(TSMC) 0.35μm、3.3V/5V、5V电源电压、2层多晶硅 4层金属(2P4M)、CMOS工艺生产制造,芯片中基准电压源电路面积大小为0.654mm×0.340mm,功耗为5.2mW.  相似文献   

12.
为了满足市场对宽温度范围、高精度带隙基准电压源的需求,本文设计制作了一种新型带隙基准电压电路。设计采用多点曲率补偿技术,在温度较低时采用指数频率补偿,高温时采用亚阈值指数曲率补偿。采用电压-电流转换器对分段补偿电流在输出端进行整合,进而在-55~150℃的温度范围内进行补偿,得到低温度系数的基准电压。设计的电路采用CSMC 0.5μm CMOS工艺验证,结果表明:5V电源电压下,输出1.25V的基准电压;在-55~150℃的温度范围内温度系数为2.5×10~(-6)/℃,在低频时,PSRR为-66dB。带隙基准电压源芯片面积为0.40mm×0.45mm。  相似文献   

13.
贾鹏  丁召  杨发顺 《现代电子技术》2013,(24):156-159,163
基于传统带隙基准的原理,通过优化电路结构,消除双极晶体管基极.发射极电压中的非线性项,设计了一种带2阶补偿的多输出带隙基准电压源。整个电路采用CSMC0.5μmCMOS工艺模型进行仿真。Spectre仿真结果表明,在-55~125℃的温度范围内,带隙基准电压源的温度系数为3.1ppm/℃,在5V电源电压下,输出基准电压为1.2994V;带隙基准电压源的电源抑制比在低频时为84.5dB;在5v电源电压下,可以同时输出0—5V多个基准电压。  相似文献   

14.
设计了一种带有二阶曲率补偿的低温漂高精度带隙基准电压源电路,通过采用分段线性补偿原理,分别在低温和高温阶段引入与一阶基准输出电压的温度系数呈相反趋势的线性补偿电流,通过电阻叠加到一阶基准输出电压上,从而大大提高了基准电压随温度漂移的稳定性。基于UMC 0.25μm BCD工艺库进行电路设计,HSPICE仿真结果表明,在–40~+125℃内,基准电压源的温度系数为2.2×10–6/℃,电源电压为2.5~5.0 V时基准输出电压波动仅为0.451 m V,在低频时电源抑制比PSRR为–71 d B。较好地满足了低温漂、高精度、高稳定性的带隙基准电压源设计要求。  相似文献   

15.
基于0.18μm CMOS工艺,设计了一种低电源电压的带隙基准源.该带隙基准源电路采用非线性温度补偿,具有很高的温度稳定性.Hspice仿真结果显示,电源电压最低为1.2V时,在-40~135℃的温度范围内,输出电压在556.03~556.26mV之间变化,平均温度系数约仅为2.36ppm/℃,电源电压抑制比可达到90dB.  相似文献   

16.
设计了一种线性补偿低温漂高电源抑制比带隙基准电压源电路。带隙基准核心电路采用三支路共源共栅电流镜结构,提高电路电源抑制比。补偿电路采用分段补偿原理,在低温阶段,加入一段负温度系数电流,在高温阶段,加入一段正温度系数电流,通过补偿,使带隙基准输出电压的精确度大大提高,达到降低温度系数的目的;同时电流镜采用共源共栅结构,不仅提高电路的电源抑制比,而且可以抑制负载对镜像晶体管电压的影响。基于0.5 μm CMOS工艺,使用Cadence Spectre对电路仿真,结果表明,在-50~+125℃温度范围内,基准输出电压的温度系数为2.62×10-6/℃,低频时的电源抑制比(PSRR)高达88 dB。  相似文献   

17.
针对传统的带隙基准源曲率补偿效果较差的问题,采用两路跨导放大器设计了一种新型的分段曲率补偿的带隙基准源。其中一路跨导放大器比较三极管的发射极-基极电压VEB和一个粗略的基准电压,在低温段产生随温度升高近似成指数减小的电流;另一路跨导放大器比较VEB和另一个粗略的基准电压,在高温段产生随温度升高近似成指数增大的电流,对传统的电流型带隙基准源进行精确的分段曲率补偿。基于TSMC 0. 18μm CMOS工艺,对电路进行设计和仿真。仿真结果表明,3. 3 V电源电压时,在-40^+150℃温度范围内,温度系数为1. 84×10^-6/℃,低频时的电源抑制比为-98. 3 d B,线性调整率为0. 0047%。  相似文献   

18.
王召  张志勇  赵武  程卫东 《微纳电子技术》2007,44(12):1087-1090
设计了电流模式曲率补偿的CMOS带隙基准源,基本原理是利用两个偏置在不同电流特性下的三极管,得到关于温度的非线性电流,补偿VEB的高阶温度项。用标准的0.6μm CMOS BSIM3v3模型库对该带隙基准源进行了仿真,结果表明在±1.5 V的电源电压下,输出基准电压为-1.418 55 V,-55~125℃较宽的温度范围内,输出电压的变化只有0.35 mV,有效温度系数达到1.37×10-6/℃。同时,带隙基准源具有较高的电源抑制比,在2 kHz下达到73 dB。  相似文献   

19.
对带隙基准电压源的温度系数和功耗进行了分析研究,采用与绝对温度成正比(PTAT)的电流和与绝对温度互补(CTAT)的电流加权和技术,同时采用放大器工作在亚阈值区技术及运放失调补偿技术,基于0.4μm的CMOS工艺设计了一个低温度系数、低功耗的基准电压电路。通过电源电压、工作温度及工艺角对基准电压影响的仿真,结果表明该带隙基准源典型的温度系数为2×10~(-6)/℃,功耗为5.472μW,基准电压为1.32 V,电源抑制比为83.5 dB,实现了低温度系数、低功耗特性,且电路工作稳定。  相似文献   

20.
张杰  党莹  张鸿 《微电子学》2023,53(5):779-785
设计了一种基于高阶温度补偿与内建负反馈稳压技术的带隙基准,所设计的带隙基准具有低温漂和高PSRR的优点。通过采用两对工作在亚阈值区的MOS管,根据不同工作温度分段产生指数型补偿电流,形成高阶温度补偿,降低了带隙基准的温度系数。基于带隙基准输出电压,通过内建负反馈稳压电路,提高了带隙基准的电源抑制能力。基于Dongbu 0.18μm BCD工艺,完成了低温漂高PSRR带隙基准的设计、版图绘制和后仿真验证。带隙基准的版图面积为290μm×200μm。后仿真结果表明,所设计的带隙基准在-45~125℃范围内温度系数仅为1.15×10-6/℃,电源抑制比为83.22 dB;在2.8~5.5 V电源电压变化下,基准电压的平均值为1.212 V,线性调整率为0.015%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号