首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triode PECVD氢稀释制备的nc-Si:H薄膜的新结果   总被引:1,自引:1,他引:0  
采用三极管型等离子体增强化学汽相淀积(TriodePECVD)系统,适当选取硅烷(SiH4)和氢气(H2)流量比制备纳米硅(nc-Si:H)薄膜.保持栅极偏压为-100V,改变SiH4、H2流量比可以得到薄膜从非晶硅(a-Si:H)到nc-Si:H的结构转变,其氢气流量比例[H2]/([H2]+[SiH4])的阈值为93.3%.随着流量比进一步增大,晶化比例从12%增大至50%,但晶粒尺寸基本保持不变,nc-Si晶粒的平均尺寸约2.5nm,这是不同于常规二极管PECVD、氢稀释制备的nc-Si:H薄膜的新结果,并从实验上验证了电导率和电子迁移率的渗流现象.  相似文献   

2.
a—SiNx:H薄膜对a—Si:H TFT阈值电压的影响   总被引:4,自引:0,他引:4  
介绍了测定a-Si:HTFT闽值电压的实验方法。重点研究了改变a-SiNx:H薄膜淀积时反应气体NH3/SiH4流速比以及a-SiNx:H膜厚对a-Si:HTFT阈值电压的影响。对实验结果进行了分析。实验结果表明:a-Si:HTFT的阈值电压随a-SiNx:H的膜厚增加而增大;增大X-SiNx:H薄膜淀积时NH3/SiH4气体流速比,可明显减小a-Si:HTFT的阈值电压。  相似文献   

3.
对纳米硅薄膜高电导机制的探讨   总被引:8,自引:1,他引:7  
使用超高真空PECVD薄膜沉积系统制备的纳米桂薄膜(nc-Si:H)具有高电导特性。为了探讨其导电机制,先使用K.Yoshida早期提出的两相无序结构有效电导模型分别对晶粒电导和界面电导进行了理论计算。指出,nc-Si:H股中高电导主要来自于细微晶粒的传导,界面可视之为非导体。另一方面,实验证实nc-Si:H股的电导率随平均品粒尺寸减少而增大,具有明显的小尺寸效应。文中首次提出,nc-Si:H膜的微晶粒具有异质结量子点(HQD)特性,并按此模型对nc-Si:H膜的电导率实验曲线进行了讨论。理论与实验结果符合得很好.又得出,硅薄膜结构在其晶态体积百分比Xc=0.30和0.70处呈现出两个明显的相变点。  相似文献   

4.
采用常规PECVD工艺,以高纯H2稀释的SiH4作为反应气体源,以PH3作为P原子的掺杂剂,在P型(100)单晶硅(c-Si)衬底上,成功地生长了掺P的纳米硅膜(nc-Si(P):H)膜.通过对膜层结构的Raman谱分析和高分辨率电子显微镜(HREM)观测指出:与本征nc-Si:H膜相比,nc-Si(P):H膜中的Si微晶粒尺寸更小(~3nm),其排布更有秩序,呈现出类自组织生长的一些特点.膜层电学特性的研究证实,nc-Si(P):H膜具有比本征nc-Si:H膜约高两个数量级的电导率,其σ值可高达10-1~10-1Ω-1·cm-1.这种高电导率来源于nc-Si(P):H膜中有效电子浓度ne的增加、Si微晶粒尺寸的减小和电导激活能△E的降低.采用nc-Si(P):H膜和P型c-Si制备了异质结二极管,其反向击穿电压值可高达75V,而反向漏电流却仅有几个nA,呈现出良好的反向击穿特性.  相似文献   

5.
以SiH4为先驱气体,采用低频等离子体增强化学气相沉积(LF-PECVD)方法在Si衬底上制备了氢化非晶硅(a-Si∶H)薄膜。在薄膜沉积过程中,工艺参数将会影响非晶硅薄膜的沉积速率和光学性能。通过反射式椭圆偏振光谱仪(SE)研究了SiH4气体流量、工作压强和衬底温度等条件对氢化非晶硅沉积速率和光学性质的影响。实验结果表明,氢化非晶硅沉积速率随着SiH4流量、工作压强和衬底温度的改变而规律地变化。相比于SiH4流量和工作压强,衬底温度对折射率、吸收系数和折射率的影响更大。各工艺条件下所制备的非晶硅薄膜光学禁带宽度在1.61~1.77eV。  相似文献   

6.
p-Si TFT栅绝缘层用SiNx薄膜界面特性的研究   总被引:1,自引:1,他引:0  
以NH3和SiH4为反应源气体,在低温下采用射频等离子体增强化学气相沉积(RF-PECVD)法在多晶硅(p-Si)衬底上沉积了SiNx薄膜.系统地分析讨论了沉积温度、射频功率、反应源气体流量比对SiNx薄膜界面特性的影响.分析表明,沉积温度和射频功率主要是通过影响SiNx薄膜中的si/N比和H含量影响薄膜的界面特性,而NH3/SiH4流量比则主要通过影响薄膜中的H含量影响薄膜界面特性.实验制备的SiNx薄膜层中的固定电荷密度、可动离子密度、SiNx与p-si之间的界面态密度分别达到了1.7×1012/cm2、1.4×1012/cm2、3.5×1012/(eV·cm2),其界面特性达到了制备高质量p-si TFT栅绝缘层的性能要求.  相似文献   

7.
在自行设计研制的先进的电子回旋共振(ECR)等离子体增强化学气相沉(PECVD)装置上,采用ECR-PECVD可控活化低温外延技术,以SiH4+H2为气源,硅和普通玻璃为衬底,低温(小于等于550℃)制备多晶硅(poly-Si)薄膜。利用反射高能电子衍射、透射电子显微镜和原子力显微镜研究了SiH4流量、H2流量和衬底温度等工艺参数的改变对薄膜晶化的影响。通过分析薄膜结构和形貌,得出适宜低温生长多晶硅薄膜的工艺参数。  相似文献   

8.
以SiH4和C3H8为反应源,在1250℃下,采用低压热壁化学气相淀积法在6H-SiC衬底上异质外延生长了3C-siC薄膜.扫描电镜和原子力显微镜测试结果显示,样品表面光滑、无明显岛状结构物质.剖面透射电镜照片显示SiC外延层致密均匀、界面平整,厚度约为50nm.高分辨透射电镜结果显示,衬底与外延层分别为排列整齐的6H-SiC结构和3C-SiC结构,两者过渡平坦、界面处无其他晶型.选区电子衍射花样标定结果再次说明外延薄膜为闪锌矿结构的3C-SiC,计算的晶格常数为0.4362nm.  相似文献   

9.
以SiH4和C3H8为反应源,在1250℃下,采用低压热壁化学气相淀积法在6H-SiC衬底上异质外延生长了3C-siC薄膜.扫描电镜和原子力显微镜测试结果显示,样品表面光滑、无明显岛状结构物质.剖面透射电镜照片显示SiC外延层致密均匀、界面平整,厚度约为50nm.高分辨透射电镜结果显示,衬底与外延层分别为排列整齐的6H-SiC结构和3C-SiC结构,两者过渡平坦、界面处无其他晶型.选区电子衍射花样标定结果再次说明外延薄膜为闪锌矿结构的3C-SiC,计算的晶格常数为0.4362nm.  相似文献   

10.
Si(100)衬底上高质量3C-SiC的改良外延生长   总被引:7,自引:7,他引:0  
介绍了新近研制出的一种电阻加热式CVD/LPCVD SiC专用制备系统,并利用该系统以SiH4、C2H4和H2作为反应气体在直径为50mm的Si(100)衬底上获得了高质量的3C-SiC外延材料.用X射线衍射和Raman散射技术研究了3C-SiC外延膜的结晶质量,在80~300K的温度范围内利用Van der Pauw方法对1~3μm厚的外延膜的电学特性进行了测试,室温Hall迁移率最高达到470cm2/(V*s),载流子浓度为7.7×1017cm-3.  相似文献   

11.
介绍了新近研制出的一种电阻加热式CVD/LPCVD SiC专用制备系统,并利用该系统以SiH4、C2H4和H2作为反应气体在直径为50mm的Si(100)衬底上获得了高质量的3C-SiC外延材料.用X射线衍射和Raman散射技术研究了3C-SiC外延膜的结晶质量,在80~300K的温度范围内利用Van der Pauw方法对1~3μm厚的外延膜的电学特性进行了测试,室温Hall迁移率最高达到470cm2/(V*s),载流子浓度为7.7×1017cm-3.  相似文献   

12.
在大气中用STM研究了固相反应生长的CoSi2薄膜表面.在Si(100)晶片上用离子束溅射淀积Co/Ti双层膜,经退火处理完成三元固相反应,生成TiN/CoSi2/Si膜,然后经H2SO4和H2O2溶液腐蚀去除TiN膜层得到均匀平整的厚度约为100nm的CoSi2薄膜.AES,XRD等分析表明所得CoSi2膜层是Si(100)衬底的外延生长膜.STM测量结果显示CoSi2薄膜表面结构致密平整,主要由交替出现的平台和台阶结构组成.平台的平均宽度为9nm,台阶高度为2个原子层厚度,分析表明这是由于Si衬底的晶面切割偏离(100)面引起的.平台表面呈平行台阶方向的相距约1.1nm的条状结构.  相似文献   

13.
激光干涉结晶法制备三维有序分布的nc-Si阵列   总被引:1,自引:0,他引:1  
利用准分子激光干涉结晶法使a Si∶H/a SiNx∶H多层膜中的超薄a Si∶H层定域晶化 ,成功地制备出三维有序分布的nc Si阵列。原子力显微镜 (AFM )、微区拉曼 (micro Raman)光谱及剖面透射电子显微镜 (X TEM)的分析结果揭示在晶化薄膜中已形成平均尺寸约为 3 6nm ,横向周期 2 μm ,纵向周期与a Si∶H/a SiNx∶H多层膜周期 (14nm)相等的nc Si阵列。  相似文献   

14.
Si(111)碳化层中的SiC结晶   总被引:5,自引:0,他引:5  
为采用HFCVD技术在Si(111)衬底上外延3C-SiC薄层而在Si表面首先进行碳化处理.实验样品用H2稀释的碳化物气氛进行碳化处理,热丝温度约为2000℃,衬底温度在950℃到1100℃之间.用X射线衍射、电子衍射和俄歇能谱等分析手段研究了碳化层的组分及结构,发现碳化层可由合碳硅结晶层、3C-SiC结晶层和富碳的3C-SiC结晶层组成.适当控制碳化条件可以调整3C-SiC结晶层的比例.  相似文献   

15.
分析了a-Si:HTFT有源层──a-Si:H薄膜质量和厚度对于a-Si:HTFT关键性指标(通断电流比、阈值电压、响应时间、开口率)的影响,深入、详细地研究了PECVD衬底温度、RF功率和频率、气体流量和反应室气压等淀积工艺参数对a—Si:H薄膜组分、结构的影响,并在实验的基础上给出了它们之间的关系曲线,确定了最佳淀积工艺参数,从而获得了高性能的7.5cm372×276象素a-Si:HTFT有源矩阵。  相似文献   

16.
掺杂nc-Si∶H膜的电导特性   总被引:6,自引:4,他引:2  
采用常规 PECVD工艺 ,以高纯 H2 稀释的 Si H4 作为反应气体源 ,以 PH3作为 P原子的掺杂剂 ,在 P型 ( 1 0 0 )单晶硅 ( c- Si)衬底上 ,成功地生长了掺 P的纳米硅膜 ( nc- Si( P)∶ H)膜 .通过对膜层结构的 Raman谱分析和高分辨率电子显微镜 ( HREM)观测指出 :与本征 nc- Si∶H膜相比 ,nc- Si( P)∶ H膜中的 Si微晶粒尺寸更小 (~ 3nm) ,其排布更有秩序 ,呈现出类自组织生长的一些特点 .膜层电学特性的研究证实 ,nc- Si( P)∶ H膜具有比本征 nc- Si∶ H膜约高两个数量级的电导率 ,其 σ值可高达 1 0 - 1~ 1 0 - 1Ω- 1· cm- 1.这种高电导率来源于 nc-  相似文献   

17.
以WSi复合材料作为靶源,采用直流磁控溅射工艺成膜,在不同氩气(载能粒子)压力条件下,800℃、17min退火前后WSi/GaAs系统的性能。包括用显微显像观察不同氩气压力下淀积膜退火前后表面变化;SEM分析系统断面、AES分析膜层与GaAs衬底的界面情况;并通过肖特基二极管I-V特性的测量研究其整流特性。实验结果表明,在1.3--1.6pa氩气压力下淀积的WSi膜层与GaAs衬底所构成的系统具有  相似文献   

18.
采用HFCVD技术,通过两步CVD生长法,以较低生长温度,在Si(111)和Si(100)衬底上同时外延生长3C-SiC获得成功.生长源气为CH4+SiH4+H2混合气体,热丝温度约为2000℃,碳化和生长时基座温度分别为950℃和920℃,用X射线衍射(XRD)和X射线光电子能谱(XPS)等分析手段研究了外延层的晶体结构、组分及化学键能随深度的变化.XRD结果显示出3C-SiC薄层的外延生长特征,XPS深度剖面图谱表明薄层中的组分主要为Si和C,且Si/C原子比符合SiC的理想化学计量比,其三维能谱曲线进一步证明了外延层中Si2p和与Cls成键形成具有闪锌矿结构的3C-SiC.  相似文献   

19.
提出了一种简单有效的制备双层SiNx薄膜的方法,其薄膜具有良好的减反射钝化特性。采用等离子体增强化学气相沉积(PECVD)的方法,通过控制SiH4和NH3气体流量比,在p型多晶硅衬底上生长单层及双层SiNx膜。随后使用薄膜测试分析仪测量了薄膜的厚度、折射率及反射率,并用Semilab WT-2000测量少数载流子寿命,通过测量量子效率,对单、双层膜电池进行了比较。实验结果表明:相比单层减反射钝化膜,采用双层SiNx膜,少数载流子寿命可以得到更好的改善,开路电压可提高约2 mV,短路电流可提高约40 mA,电池效率能提高0.15%。  相似文献   

20.
研究了衬底温度、反应气体流量等工艺条件对掺杂B(CH3)3(TMB)的P型氢化非晶硅碳(a-SiC:H)窗口材料性能的影响,获得了电导率达到8.97×10-7 S/cm、光学带隙大于2.0 eV的P型a-SiC:H窗口材料.研究了单结电池P型a-SiC:H窗口层的CH4流量与P、I层制备温度三者间的匹配关系.结果表明,随着衬底温度的提高,需要更多的CH4流量以增大P型窗口层的带隙Eg和电池的短路电流密度Jsc;沉积系统中,P型窗口层的温度比本征吸收层高25~50 ℃时,电池性能较好.研究了3种类型的P/I缓冲层对单结电池性能的影响.大量实验表明,不掺B的C缓冲层适合于低温和小CH4流量情况使用;掺B的C缓冲层 不掺B的C缓冲层适合于高温和大CH4流量情况使用;采用不掺B的C缓冲层的电池光稳定性高于采用B、C渐变缓冲层的电池.研究还表明,采用新型TMB作为P型窗口层掺杂剂的电池比传统采用B2H6作为P型窗口层掺杂剂的电池转换效率提高约1.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号