首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
针对高速客车曲线通过横向振动数学模型,基于matlab数值仿真对车辆系统稳态曲线通过性能进行研究,采用升速法计算出系统的非线性临界速度,分析系统超过临界速度后蛇行失稳现象及车辆稳态通过曲线时一系、二系悬挂刚度对轮轨横向力、轮对冲角、轮对横移量的影响。结果表明,车辆曲线通过性能主要与一系纵向刚度有关,并且对一系纵向刚度值在相对较小范围内变化比较敏感;当曲线半径为3500 m,外轨超高量为60 mm时,系统非线性临界速度为46.5 m/s,较直线轨道减小,稳定性降低。  相似文献   

2.
在离心力的作用下,跨坐式单轨车辆走行部一侧的稳定轮减载。根据稳定轮刚刚脱离轨面这一临界状态,定义此时车体离心力为临界横向力。采用达朗贝尔原理将跨坐式单轨车辆通过曲线的动力学问题转换为静力学问题,推导出临界横向力和稳定轮预压力之间的关系公式,并利用多体动力学软件UM验证了公式的准确性。依据临界横向力公式,从舒适度角度计算稳定轮预压力的合理取值,得到曲线最高限制速度和最低限制速度与稳定轮预压力、轨道梁超高率以及曲线半径之间的关系。结果表明:临界横向力与稳定轮和导向轮的预压力成线性关系;考虑运行安全性和舒适度要求,本文中车辆的稳定轮和导向轮预压力设置为7kN时,轨道梁最大超高率设置为6%比较合适。  相似文献   

3.
高速铁道车辆蛇行脱轨安全性评判方法研究   总被引:1,自引:0,他引:1  
通过建立轮轨三维几何接触模型、整车动力学分析模型和轮轨碰撞模型,分析高速铁道车辆蛇行失稳后的蛇行脱轨过程及其影响因素.高速铁道车辆的蛇行脱轨过程是一个爬轨和跳轨并存的复杂过程,轮对的名义冲角和有效冲角分别对准静态的爬轨和动态的跳轨起着重要影响作用;随着轮对横移速度的增大、轮轨摩擦系数以及车轮垂向载荷的减小,车轮的跳轨高度越大;横向蠕滑力在整个蠕滑力中所占比例以及轮对横向运动能量越大,车辆越容易脱轨.因此高速铁道车辆的蛇行脱轨安全性应根据轮对横移速度限值并考虑车辆的横向运行稳定性进行评判.当高速铁道车辆分别表现为“超临界”和“亚临界”的蛇行失稳极限环分岔形式时,可分别采用转向架横向加速度移动均方根值方法和转向架横向加速度限值对其横向运行稳定性进行评判.  相似文献   

4.
为研究不同线路条件对车辆横向动态偏移量的影响,从而为高速铁路限界的拟定提供理论依据,利用SIMPACK软件建立车辆一线路耦合模型,研究轨道不平顺、曲线超高对车辆最大横向动态偏移量的影响。结果表明:轨道不平顺会增大车辆的横向动态偏移量,在直线线路上车辆横向动态偏移量随列车速度的增大而增大;当列车速度为350km/h时,动态偏移量增大到22.7mm;在曲线半径为300m的线路上,轨道不平顺使动态偏移量分剐增大了10.1mm;对于相同的小半径曲线线路,列车通过速度越大,车辆横向动态偏移量越小,但会加剧欠超高。列车通过速度过低,车辆存在倾覆的危险;建议确定车辆动态限界时应考虑轨道不平顺、曲线线路超高以及列车通过速度的影响。  相似文献   

5.
减振器橡胶节点刚度对铁道客车系统临界速度的影响   总被引:2,自引:0,他引:2  
建立考虑抗蛇行减振器和二系横向减振器橡胶节点刚度的铁道客车横向振动系统数学模型,通过变量变换得到便于数值积分求解的客车系统运动微分方程组,给出线性和非线性临界速度的近似计算方法。以1辆高速客车为例,比较考虑和不考虑减振器橡胶节点刚度情况下客车系统在直线和圆曲线轨道上临界速度的差别,重点研究抗蛇行减振器和二系横向减振器的橡胶节点刚度对客车系统临界速度的影响。结果表明:抗蛇行减振器橡胶节点刚度对客车系统临界速度有一定影响,而二系横向减振器橡胶节点刚度对客车系统临界速度的影响较小;直线轨道上客车系统的线性和非线性临界速度大于曲线轨道上的值,且线性临界速度高出的值更大些;客车系统在直线轨道上的线性临界速度与非线性临界速度的差值也大于曲线轨道上的值。  相似文献   

6.
高速铁路曲线线路车线耦合系统动力学性能仿真分析   总被引:1,自引:0,他引:1  
依据系统工程理论,建立高速铁路曲线线路车线耦合系统有限元模型,对曲线线路在高速行车条件下的耦合系统动力学性能进行仿真,研究时速300 km等级高速动车组作用下曲线线路安全与平稳性指标,曲线线路轨道结构各部分的振动响应、列车速度与曲线半径和超高的关系.结果表明动车组以350 km·h-1的速度通过半径为5 500,7 000和9 000 m的曲线线路时,动车组的垂向和横向振动加速度以及平稳性能均满足舒适度要求,而且脱轨系数和轮轴横向力也能满足列车运行安全性要求;钢轨支点的横向力表现为过超高时内轨侧大、外轨侧小,欠超高时外轨侧大、内轨侧小;钢轨、轨枕的垂向和横向加速度随速度增加明显增大,而道床和路基的垂向加速度变化不大;钢轨和轨枕的横向动位移和动态轨距扩大量随速度的增加而增大;相同速度下,曲线半径小的轨道振动相对较大.  相似文献   

7.
针对铁道车辆蛇行运动分岔图中不稳定极限环通过整车动力学仿真求解困难的问题,提出直接积分求解不稳定极限环的方法——初态激扰法。该方法利用多体系统动力学软件Simpack建立高速列车动力学模型,采用Matlab软件对拟周期解进行动态加权调整后作为车辆系统主要部件的初始状态,在光滑轨道上时域积分获取刚体运动状态,在轮对横移幅值随运行速度变化的分岔图中绘制不稳定极限环及平衡点和稳定极限环,从而得到完整的车辆蛇行运动分岔图。以某高速列车为例,基于初态激扰法求解不同轮轨接触工况和抗蛇行减振器故障工况下蛇行运动分岔曲线。结果表明:新轮和磨耗轮工况的车辆蛇行运动分别对应Hopf亚临界分岔和超临界分岔行为,且磨耗轮工况下蛇行运动由亚临界分岔变为超临界分岔;不改变抗蛇行减振器阻尼仅减小卸荷力,对车辆Hopf分岔临界速度没有影响,但会降低车辆LPC (Limit Point Bifurcation of Circles)分岔临界速度并减小不稳定极限环的幅值,从而降低车辆横向稳定性。  相似文献   

8.
重载线路小半径曲线外股钢轨侧磨速率明显加快.采用仿真计算结合现场测试,分析我国重载铁路轨道几何参数(超高和轨底坡)对曲线钢轨磨耗速率的影响规律.采用多体动力学软件 NUCARS 建立我国重载货车—轨道模型,改变超高和轨底坡两项轨道几何参数,采用数值积分方法仿真计算车辆通过曲线的性能.分析结果表明,设置合理的曲线欠超高和非对称的轨底坡可改善车辆通过曲线时的轮轨接触状态,降低了轮对冲角、外轨横向力和磨耗指数,从而在一定程度上减小钢轨磨耗速率.现场试验段长期观测的数据表明,两种措施对改善小半径曲线钢轨侧磨起到积极的作用.  相似文献   

9.
为研究轨道参数对单轴转向架曲线通过性能的影响,运用SIMPACK软件建立了单轴转向架车辆动力学模型,采用轮轨横向力、脱轨系数、轮重减载率等作为评价指标,对曲线半径、超高、轨距等轨道参数进行仿真分析。结果表明:曲线半径、轨距和轨底坡对车辆运行性能的影响较为显著,随着曲线半径的增加,各项指标最大值均减小,增大曲线半径能够提高钢轨的使用寿命;曲线上设置适量欠超高能够改善运行性能,提高车辆安全性;小半径曲线上适当加宽轨距和增大轨底坡可以减小轮轨作用力,提高车辆曲线通过性能,减轻轮轨磨耗,延长钢轨使用寿命。  相似文献   

10.
直线段货车脱轨原因的仿真研究   总被引:2,自引:2,他引:0  
采用50个自由度的货车-轨道非线性耦合动力学模型,仿真计算了计入轨道弹性的典型空货车非线性蛇行运动规律,指出非线性蛇行运动存在着临界速度和转变速度,分别对应着蛇行运动的不同状态.研究了摇枕与侧架抗菱刚度、一系纵向刚度对非线性蛇行转变速度的影响.研究了不平顺对直线段货车脱轨稳定性的影响,结果表明波长6~8 m的方向不平顺和波长4~6 m的高低不平顺引起较大的脱轨系数和减载率,使脱轨危险性增大.计算和测试结果在规律上具有很好的一致性,从车辆结构和轨道状态两个方面解释了直线段货车脱轨的原因.  相似文献   

11.
房建  雷晓燕  练松良  刘林芽 《铁道工程学报》2011,(5):45-46,48,50,85
研究目的:本文旨在通过现场实测和仿真计算研究曲线轨道不平顺对车辆动力特性的影响。首先,利用轨检车实测数据对我国提速线路轨道不平顺与车辆振动加速度之间的关系等进行了统计分析及相关分析,对武九线曲线段的轨道谱也进行了初步估计。其次,采用动力学仿真软件Adams/Rail建立车辆-轨道动力学模型,并以实测数据作为验证手段,分析了轨道不平顺类型、幅值和波长对车辆运行平稳性和安全性的影响,提出了对行车运行有不利影响的不平顺波长范围。研究结论:高低不平顺对列车垂向振动影响显著,轨向不平顺对列车垂向、横向振动均有显著影响,当列车以110 km/h运行时,为了避免列车在不平顺激励下产生共振,应该对2.5 m、3.72 m、20 m和28 m波长的轨道不平顺进行控制。  相似文献   

12.
运用随机平均法对轮对系统的随机分叉行为进行研究,对比亚临界和超临界分叉2种典型轮对系统随机动态分叉的差异,分析动态分叉与Hopf分叉的区别,定义全局随机临界速度,提出新的失稳判定方法。结果表明,随机激扰对轮对系统的稳定性影响很大,在随机激扰的作用下,轮对系统的临界速度会随着随机激扰的强度增大而显著降低,当轮对仅受轨道随机激励时随机激扰对稳定性的影响不大,但遇到大风等强激扰环境时,随机激扰的影响将不可忽视。随机动态分叉点对应的速度可作为全局随机临界速度,且最大Lyapunov指数法可作为新的失稳判定方法。  相似文献   

13.
轮/轨接触几何参数对高速客车动力学性能的影响   总被引:20,自引:1,他引:19  
为研究轮轨关系对高速铁路车辆动力学性能的影响,选择中国车轮踏面LMA与钢轨断面CHN60、日本新干线圆弧车轮踏面JP-ARC与钢轨断面JIS60和欧洲标准车轮踏面S1002与钢轨断面UIC60,应用AD-AMS/Rail软件,考虑轮对内侧距从1 353 mm变化到1 360 mm的情况,计算分析高速客车的临界速度、脱轨系数、车辆运行平稳性以及车辆稳态曲线通过的轮轨磨耗指数。车辆动力学仿真计算中均采用基于先锋号客车基本参数建立的车辆动力学模型。分析轮轨几何参数对高速车辆运行平稳性和稳定性的影响,结果表明:增大轮对内侧距可以改善舒适性,减小磨耗,提高临界速度。  相似文献   

14.
基于惯性力与轮对蛇行频率及波长间的关系,研究轨距对机车车辆稳定性的影响,并通过对各种轨距下单轮对走行部和转向架式走行部的特征值计算,验证分析结果。结果表明:对于单轮对走行部,轨距越宽,车辆稳定性临界速度越高;对于转向架式走行部,轨距越宽,机车车辆稳定性临界速度越低;采用弹性定位后,可以提高单轮对走行部的稳定性临界速度;转向架采用弹性定位之后,优化的悬挂设计可以使机车车辆达到很高的稳定性临界速度;对于转向架式走行部,速度对稳定性的影响程度与轴距的影响程度相当,在其他条件不变的情况下,轴距增大20%,相当于其稳定性临界速度可提高20%;车轮踏面等效锥度和名义滚动圆半径对单轮对或转向架式走行部稳定性临界速度的影响与轨距的影响程度相同,锥度加大或轮径减小,均会降低机车车辆的稳定性。  相似文献   

15.
依托唐山试验线曲线半径为100m的17.7m+27m+17.7m斜弯连续梁,对中低速磁浮线轨道梁设计进行初步探讨。为了满足车辆限界和轨道安装及承轨台预埋件的要求,连续曲梁截面斜置,构成复杂的空间扭转曲线箱梁。轨道梁桥面与轨道采用承轨台上置式连接方式。为了增加轨道梁的横向稳定性,采取了增大梁宽、加大支座横向间距、设置拉力支座等构造措施。根据连续曲梁的受力特点,建立空间模型进行了计算分析,并参考相关规范,讨论了轨道梁刚度和动力特性的设计要求。  相似文献   

16.
基于车辆/轨道耦合动力学原理,建立了横风作用下的车辆/轨道耦合动力学模型。模型中,车辆系统采用两系悬挂共35个自由度的多刚体动力学模型。轨道系统采用3层连续弹性离散点支承模型。用赫兹接触理论计算轮轨法向力,用沈氏理论计算轮轨滚动接触蠕滑力,并用显式积分法求解系统运动方程。横风由作用在车体中心的气动升力、侧力和倾覆力矩来模拟。通过数值计算,得到了横风作用下高速客车直线运行的系统动态响应,分析了不同横风作用时间对运行安全性的影响。结果显示,随着横风作用时间的增长,车辆脱轨系数、轮重减载率乃至倾覆系数迅速增大,车辆运行安全性不断降低。  相似文献   

17.
限界计算是地铁工程设计过程中较为繁琐的一项工作,直接关系到车辆运行安全。针对天津地铁6号线工程中应用9号曲尖轨道岔的情况,综合考虑车辆在道岔侧股运行时的几何偏移量、欠超高引起的动态偏移量、曲线轨道参数及车辆参数变化引起的车体横向位移量,计算并拟合B型车道岔区建筑限界加宽量图,为道岔区土建、结构设计提供理论依据。计算结果表明:B型车道岔外侧建筑限界加宽始于岔心前端25.75m处,最大加宽量为166 mm;道岔内侧加宽始于岔心前端22.55 m处,最大加宽量为429 mm。  相似文献   

18.
高速行车条件下轨道几何不平顺敏感波长研究   总被引:1,自引:0,他引:1  
应用车辆-轨道耦合动力学理论及分析软件TTISIM,研究轨道几何不平顺波长变化对高速车辆系统动力响应影响,探讨高速行车条件下轨道几何不平顺敏感波长问题。结果表明:在250~400km/h行车速度域,高速列车系统动力响应指标随轨道不平顺波长变化存在一个幅值相对较大区间;轨道不平顺类型和行车速度不同,敏感区间对应轨道不平顺波长范围亦不相同。综合对比发现:在250~400km/h行车速度域,轨道高低、方向和水平不平顺在长波段敏感波长范围分别约为80~160m、40~120m和50~160m;在相同行车速度条件下,轨道扭曲不平顺在长波段敏感波长范围约为40~100m。  相似文献   

19.
建立地震作用下车辆-CRTS Ⅲ型板式轨道系统振动模型及振动方程,并编制相关计算程序,分析地震动强度以及行车速度对行车安全的影响规律。研究结果表明:地震动强度和行车速度对CRTS Ⅲ型板式无砟轨道上行车安全有重要影响,安全性指标均随着两者的增大而增大,其中脱轨系数对地震动强度敏感性较高,行车速度对轮重减载率的影响较大,且地震动强度以及行车速度的增大会分别导致轮轴横向力和轮重减载率超出限值。研究成果对CRTS Ⅲ板式轨道的抗震设计具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号