首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
高速客车轮对动力学性能的比较   总被引:4,自引:0,他引:4  
为了比较不同车轮踏面及轮对内侧距对高速客车动力学性能的影响,首先采用改进轮轨接触几何关系算法分析了不同情况下的静态轮轨几何接触关系,然后通过车辆/轨道耦合动力学模型,对高速客车蛇行临界速度、运行平稳性和曲线通过性能进行了动态仿真计算。数值计算中,主要考察了LM、LMA、S1002和XP55等4种车轮踏面和轮对内侧距由1350 mm到1360 mm变化的情况。结果表明,车轮踏面形状和轮对内侧距对高速客车动力学性能有重要的影响,且LMA型车轮踏面与1353 mm的轮对内侧距匹配具有较好的动力学性能。要确定合适的车轮踏面和轮对内侧距,须从轮轨接触关系的变化出发,综合评估车辆动力学性能。  相似文献   

2.
高速轮轨接触几何关系的比较分析   总被引:7,自引:0,他引:7  
高速轮轨接触几何关系研究涉及诸多因素。选择中国车轮踏面LMA与钢轨CHN60、日本新干线圆弧车轮踏面JP-ARC与钢轨JIS60和欧洲标准车轮踏面S1002与钢轨UIS60,比较这3种轮轨关系的几何参数差异,编制了轮轨接触几何的数值分析软件,计算不同轮对内侧距情况下的轮轨接触几何关系,比较在轮对内侧距为1353和1360mm情况下,轮对横移时的滚动圆接触半径差和接触角差的数值计算结果,探讨适应于我国高速车轮踏面形状和轮对内侧距,为高速轮轨关系的深入研究提供基础。  相似文献   

3.
轮对内侧距对机车车辆动力学性能影响的试验研究   总被引:11,自引:0,他引:11  
在分析国内外轮对内侧距方面已有研究结果的基础上,在不改变车轮踏面形状、轨距和钢轨轨头形状的情况下,进行单纯改变车辆轮对内侧距的滚动台试验研究,分析等效锥度对轮轨接触几何关系的影响,得出以下结论。①在保持轮轨接触几何关系相同的情况下,增加轮对内侧距有利于改善轮轨关系和机车车辆动力学性能。②在车轮踏面形状、轨距、钢轨轨头形状等保持不变的情况下,单纯改变轮对内侧距,必然会导致轮轨接触关系的变化,从而影响机车车辆的动力学性能;对于我国目前采用的车轮踏面形状、轨距、钢轨轨头形状而言,轮对内侧距从1 353 mm变化到1 360 mm,将导致轮轨接触等效锥度的增加,从而降低车辆的运动稳定性临界速度。③轮对内侧距的选取与车轮踏面形状的选择密切相关,在改变轮对内侧距以后,必须根据轮轨接触几何关系的变化重新对其进行综合优化,确定合适的车轮轮缘踏面外形。  相似文献   

4.
车轮偏磨对高速列车直线运行性能的影响   总被引:1,自引:0,他引:1  
对某高速线路上运用的高速列车车轮踏面磨耗特性进行跟踪测量,发现高速列车车轮踏面以凹形磨耗为主,各轮对均存在偏磨现象,部分车辆出现整体向同一侧偏磨的现象。对现场实测车轮的轮轨接触几何特性进行计算分析,根据列车参数建立车辆动力学仿真模型,分析凹形磨耗及不同车轮偏磨形式对车辆动力学的不利影响。结果表明:当轮对出现偏磨时,随着轮对横移的变化,踏面等效锥度存在负锥度现象,导致轮轨接触的平衡位置偏离轮对对中位置,加快偏磨的发展;凹形磨耗踏面轮轨接触点存在多个平衡位置,车辆运行过程中轮轨接触点在几个平衡位置间跳跃造成"轮缘到假轮缘"的冲击振动,影响车辆的运行性能;当车轮产生偏磨后,轮轨冲击振动对车辆的影响变得更为复杂;同相偏磨较反相偏磨对车辆的临界速度及平稳性影响更为严重。  相似文献   

5.
建立车辆—轨道耦合动力学模型,计算和分析LMA型面的车轮在不同磨耗程度下与60N钢轨匹配时高铁车辆直线运行中车轮的等效锥度和轮轨动态接触点位置及平稳性指标,以及曲线通过时的脱轨系数、轮重减载率、轮轨横向力、轮对横移量和磨耗功均方根值及车轮表面滚动接触疲劳系数均方根值,并与60钢轨对比。结果表明:LMA型面的磨耗车轮与60N钢轨匹配时,在车辆运行里程达到25万km后,直线运行条件下轮轨动态接触点的横向分布宽度仅为8.2mm,仅约为60钢轨的一半,车辆运行的稳定性优于采用60钢轨时;车辆曲线通过时的轮轨横向力、车轮抗磨耗和疲劳性能也均优于采用60钢轨时;总之,相比60钢轨,不同磨耗程度的车轮与60N钢轨匹配均能保持较好的车辆动力学性能。  相似文献   

6.
基于武广线上运行的某高速动车组车轮的磨耗状态的跟踪测试,发现车轮踏面以凹形磨耗为主。对不同运行阶段实测车轮踏面磨耗状态进行分析,研究磨耗车轮与钢轨接触时的接触几何参数。根据线路上实际运行动车组性能参数,运用SIMPACK软件包完成车辆系统动力学模型,对比分析S1002CN车轮与实测踏面车辆的运行稳定性、平稳性及安全性指标,研究车轮踏面凹形磨耗对列车动力学性能的影响。研究结果表明:车轮踏面凹形磨耗将导致转向架及轮对横向加速度急剧增大,车辆稳定性、平稳性将有所降低,凹形磨耗是引起转向架横向报警的直接原因。  相似文献   

7.
为了改善地铁车轮出现的异常磨耗问题,对上海地铁3号线车辆车轮踏面DIN5573出现的磨耗进行测试,获得2种磨耗车轮踏面。在SIMPACK软件中建立了地铁车辆动力学仿真模型,计算得到未磨耗、凹形磨耗、沟槽状磨耗3种车轮踏面与TB60,60N钢轨型面匹配时轮对横移量,将其输入到用ABAQUS软件建立的轮轨三维弹塑性有限元模型,分析不同轮轨型面匹配对接触应力的影响。结果表明:3种车轮踏面与60N钢轨型面匹配时轮轨接触点均匀分布在轨顶和车轮踏面中部,等效锥度基本稳定;在半径350 m的曲线上,与TB60钢轨型面匹配相比,3种车轮踏面与60N钢轨型面匹配时轮轨最大接触应力最多减小384.9 MPa,钢轨、车轮最大Mises应力最大减幅分别为40%,35%。城市轨道交通小半径曲线地段较多,采用60N钢轨型面可以明显降低曲线外股的接触应力,减少轮缘磨耗和钢轨侧磨,从而降低钢轨疲劳伤损。  相似文献   

8.
针对某高速铁路动车组车体抖动问题,采集不同线路工况下车体振动加速度及平稳性数据、不同磨耗车轮踏面及打磨前后钢轨廓形,研究不同线路工况、车轮踏面和钢轨廓形对动车组车体振动特征影响,研究镟轮后不同时期车轮踏面和打磨前后钢轨廓形匹配下轮轨几何接触关系。同时,采用实际线路及动车组车辆参数,基于多体动力学软件Simpack建立包含实测车轮踏面和钢轨廓形的车辆-轨道耦合系统动力学模型,计算车轮镟修和钢轨打磨对车辆关键动力学指标的影响。研究结果表明:该高速铁路动车组车体抖动主要发生在隧道工况内,体现为垂向和横向的综合异常振动;随车轮踏面磨耗增加,实测车体振动加速度逐渐增大,轮轨接触关系逐渐恶化,与未廓形打磨钢轨匹配时尤为明显;钢轨打磨可以有效抑制等效锥度随车轮踏面磨耗增加的不断增大,有效改善轮轨接触关系。车轮镟修和钢轨廓形打磨均可降低等效锥度,有效整治高速铁路动车组车体抖动。  相似文献   

9.
为对比分析铁路货车在60 kg/m和60N钢轨上的轮轨动力学性能,以C70货车为例,采用SIMPACK多体动力学软件建立基于60 kg/m和60N钢轨的货车-轨道耦合动力学模型,计算轮轨几何接触关系、车辆运行稳定性和平稳性、轮轨作用力等。计算结果表明:LM车轮踏面与60N钢轨匹配时,轮轨接触点靠近轨面中心,车辆运行有更高的稳定性和平稳性;车辆通过曲线时,车辆在60N钢轨上的轮轨接触斑面积较大,轮轨间的垂向作用力、横向作用力较大,通过小半径曲线时轮轨横向蠕滑力较大;车辆与60 kg/m钢轨之间的总蠕滑力、纵向蠕滑力、最大法向接触应力和磨耗指数较大,加剧了60 kg/m钢轨的磨损。  相似文献   

10.
踏面凹形磨耗是我国高速列车服役过程中车轮磨耗的主要形式,踏面凹形磨耗随镟修后里程逐渐加剧,将引起轮轨接触关系的变化,进而引起车辆动力学性能的恶化。为揭示我国高速列车踏面凹形磨耗的特点和规律,通过对国内某高速动车组的部分车轮进行长期跟踪测试,并基于测试结果研究踏面不同位置的磨耗量,发现磨耗中心位置与名义滚动圆的偏离现象,提出基于离散点直接积分的磨耗面积表征方法。进一步通过数学推导、多体动力学建模与仿真、以及车载实测振动数据的分析验证,研究不同踏面凹形磨耗程度情况下,车辆临界速度、轮轨作用力、振动信号的蛇行运动频率等动力学特性和指标随车轮旋修后运行里程的变化情况,总结得到踏面凹形磨耗对高速列车动力学的影响规律。  相似文献   

11.
高速列车服役过程中,轮对的不对称磨耗对车辆的动力学性能有重要影响。文中采用多体动力学方法,建立车体动力学模型,通过仿真计算研究了轮对不对称磨耗对车辆动力学指标的影响,得出如下结论:随着轮径差的增大,车辆的稳定性、平稳性及曲线通过性能等都有不同程度的下降。因此,高速列车服役过程中应加强轮对状态检测,以保证列车运营的安全性。  相似文献   

12.
基于车辆/轨道耦合动力学原理,建立了横风作用下的车辆/轨道耦合动力学模型。模型中,车辆系统采用两系悬挂共35个自由度的多刚体动力学模型。轨道系统采用3层连续弹性离散点支承模型。用赫兹接触理论计算轮轨法向力,用沈氏理论计算轮轨滚动接触蠕滑力,并用显式积分法求解系统运动方程。横风由作用在车体中心的气动升力、侧力和倾覆力矩来模拟。通过数值计算,得到了横风作用下高速客车直线运行的系统动态响应,分析了不同横风作用时间对运行安全性的影响。结果显示,随着横风作用时间的增长,车辆脱轨系数、轮重减载率乃至倾覆系数迅速增大,车辆运行安全性不断降低。  相似文献   

13.
以普速铁路京九线不同曲线半径为研究对象,建立车辆-轨道动力学模型、磨耗和裂纹萌生预测模型;计算60N廓形在不同曲线半径条件下的轮轨接触状态,预测了不同曲线条件下磨耗发展率、裂纹萌生位置与寿命,并与京九线现场观测结果进行对比验证.研究结果表明:随着疲劳损伤的累积,不同曲线半径下钢轨的阶段磨耗发展率呈下降的趋势,其中曲线半径小(600 m)的磨耗发展率降低最快,随着曲线半径的增大,平均磨耗发展率降低趋势减缓;不同曲线半径下钢轨裂纹萌生位置均在钢轨表面以下1~3 mm处,横向位置在距离轨顶中心15~20 mm范围内,曲线半径600 m外轨裂纹萌生寿命大约为2.64×10^5次,内轨裂纹萌生寿命约为4.86×10^5次,与现场观测较为符合.  相似文献   

14.
地铁小半径曲线与车体振动、舒适度及轨道状态关系密切,文章通过对广州地铁各曲线进行长期试验研究,分析小半径曲线与轨道状态、车体振动、行车舒适度的关系以及演变规律。研究结果表明,车辆通过小半径曲线时,行车速度越大,车体横向加速度越大,乘客舒适度越差;曲线半径越小,乘客舒适度越差;通过小半径曲线与其他曲线、直线的轨道质量指数(TQI)对比发现,曲线的半径越小,TQI越大,轨道状态、轮轨接触关系越差。最后提出通过小曲线的速度建议。  相似文献   

15.
基于开关阻尼控制的铁道客车系统的动力学性能研究   总被引:7,自引:0,他引:7  
建立具有23个自由度的铁道客车系统非线性数学模型。在客车二系悬挂系统中采用具有开关阻尼控制的横向半主动减振器,并考虑半主动悬挂系统的时滞。分析被动悬挂和具有开关阻尼控制的半主动悬挂客车在直线轨道上的蛇行运动稳定性和随机振动响应。研究半主动减振器的阻尼参数和半主动悬挂系统的时滞对客车系统临界速度和随机响应的影响。计算表明,尽管半主动悬挂使客车系统的临界速度低于被动悬挂,构架的横向加速度和轮轨横向力也要大于被动悬挂,但它能够大大减小车体的横向振动加速度,改善旅客的乘坐舒适性。  相似文献   

16.
山西中南部铁路通道发鸠山隧道改线方案动力学优化   总被引:1,自引:1,他引:0  
依托山西中南部铁路通道工程,建立车线系统动力学模型,选取典型区段线路设计方案进行全面的动力学评估。以发鸠山隧道改线方案原设计和优化后设计的线路平纵断面参数作为线路条件,对比30 t货车和客车通过时的动力学性能指标,给出适用于30 t大轴重的重载铁路圆曲线半径建议值,可供未来重载铁路线路设计参考。  相似文献   

17.
运用Midas软件分别建立简支梁桥-CRTSⅡ型板式无砟轨道空间耦合静力学模型和车-线-桥耦合动力学模型,进行32m高速铁路简支梁桥铺轨后残余徐变上拱限值研究。结果表明:桥梁残余徐变变形是影响32m波长周期性高低不平顺的主要因素;随着桥梁残余徐变幅值增加,长钢轨的附加不平顺呈线性增大,桥梁残余变形幅值为10mm时,钢轨的上拱变形量可达9.8mm;行车速度为380km·h^-1、桥梁残余徐变上拱幅值由3mm增加至10mm时,车体的垂向加速度峰值由0.275m·s^-2增加至1.159m·s^-2,旅客乘坐舒适度指标由1.549逐渐增加至3.105;当桥梁残余徐变幅值为8.0mm,在280~380km·h-1车速范围内,旅客乘坐舒适度指标达到3.108,桥梁梁端振动加速度达到5.217m·s^-2,已超出规范限值,因此建议高速铁路32m简支梁桥铺轨后其残余徐变上拱限值按7.0mm控制,为避免残余徐变限值的改变对桥梁设计方案产生显著影响,可通过适当延后铺轨时间保证桥梁残余徐变变形满足限值要求。  相似文献   

18.
TMD抑制既有铁路钢桁梁桥横向振动研究   总被引:4,自引:0,他引:4  
顾萍  王淼  吴定俊 《铁道学报》2005,27(2):85-89
针对我国既有铁路钢桁梁桥的振动特性,对机车、转8转向架货车和客车分别建立车桥TMD系统耦合振动方程,将轮对的蛇行及轨面不平顺作为主要的激振源,通过随机函数产生随机激振,利用车桥TMD耦合振动仿真程序的大量模拟计算,研究桥梁在列车尤其是长大空重混编的货物列车随机激励下的横向振动规律,分析多点调频质量阻尼减振器抑制铁路钢桁梁桥横向振动的效果。结果表明,TMD能有效的抑制既有铁路钢桁梁桥的横向振动。  相似文献   

19.
高速铁路钢轨打磨关键技术研究   总被引:2,自引:0,他引:2  
根据我国高速铁路上运行车辆的车轮型面设计钢轨的预打磨轨头廓面.按照该预打磨轨头廓面对钢轨进行预打磨,可有效改善轮轨的接触状态.给出了适用于不同车轮型面的钢轨预打磨深度理论设计值以及适用于LMA和S1002G车轮型面的钢轨预打磨轨头廓面.关于预打磨后的实际轨头廓面与预打磨设计廓面的误差,在轨距角部位应控制在-0.1~0.3 mm范围内.建议我国高速铁路的钢轨打磨周期为每30~50 Mt通过总重打磨1次,对于无砟轨道取上限,有砟轨道取下限;关于60kg·m-1钢轨的预打磨深度,在轨距角部位应达到0.8~1.5 mm,在主要轮轨接触部位应大于0.3 mm;钢轨打磨后的表面粗糙度应小于10μm;采用48磨头打磨车时应打磨3~4遍,采用96磨头打磨车时应打磨2遍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号