首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 500 毫秒
1.
通过扫描电镜、透射电镜等手段研究了汽车外板用6016铝合金生产过程中微观结构的演变规律和中间退火工艺对综合性能的影响。结果表明,连续退火比箱式退火具备更强的晶粒细化作用;中间退火前冷轧压下量对结晶相破碎效果显著,结晶相尺寸从4.38 μm降至3.20 μm左右,降低了约27%;中间退火处理弱化了T4P态板材中的不均匀屈服延伸。箱式退火的慢升温速率和长时间中温保温导致Mg2Si相沿晶析出并粗化。  相似文献   

2.
对冷拉拔的亚微米晶Cu-5wt%Cr合金丝材进行350~1000℃退火处理,用透射电镜分析了退火后合金回复与再结晶以及Cr相析出的变化,并测定合金硬度、强度、伸长率和电导率的变化.结果表明,冷拉拔的亚微米晶Cu-5wt%Cr丝材在450 ℃左右退火后析出大量Cr相颗粒,其再结晶软化温度为480~560℃.经550℃退火,得到了晶粒尺寸为200~300 nm的再结晶组织.其电导率在550℃左右退火时出现峰值.冷拉拔的亚微米晶Cu-5wt%Cr丝材在600 ℃以上退火,其组织和性能趋于稳定.经800 ℃高温退火,Cu基体晶粒长大到500~600 nm,仍保持在亚微米级.Cr相颗粒有阻碍Cu基体晶粒长大的作用,从而使亚微米晶Cu-5wt%Cr的组织和性能比较稳定.  相似文献   

3.
对6014铝合金进行了常温拉深试验,采用不同的拉深凸模速度,研究了该铝合金变形中的组织力学行为;对6016铝合金进行热拉伸试验,相同应变速率下采用不同的拉伸温度,研究了该铝合金在热拉伸过程中的组织力学行为。实验表明:随着凸模速度(10~30 mm·min~(-1))增加,6014铝合金的常温拉深深度增大;随着拉伸温度(400~550℃)升高,6016铝合金的硬度增大,且沿拉伸轴向硬度值波动越大;在应变速率为1 s~(-1)、温度为500℃下热拉伸,变形区有明显的动态再结晶过程,进一步升高温度会造成再结晶组织的晶粒粗化;6014和6016铝合金中均存在大量的Al、Fe、Si结晶相,但原始组织中6016的析出相更弥散,尺寸大小更均匀,更集中分布于晶界附近;比较6014铝合金常温拉深组织和6016铝合金热拉伸组织,冷变形后的晶粒组织更均匀,热拉伸后的晶粒尺寸差异很大,会降低材料变形后的力学性能。  相似文献   

4.
针对6016铝合金板材在实际生产中出现的包边开裂问题,采用金相显微镜、扫描电镜对包边开裂过程中的组织演变进行了分析,探究了包边产生开裂的原因.结果表明:在未变形区域,晶粒均为再结晶晶粒,其中,表面晶粒分布较为均匀,横、纵截面表层晶粒尺寸较心部晶粒大,且存在异常长大的晶粒,对包边性能会产生不利的影响;在包边开裂处,外拉伸...  相似文献   

5.
利用拉伸试验机、TEM透射电镜和XRD,研究了中间退火处理对6000系AlMgSiCu铝合金冷轧板力学性能和组织织构演变的影响。结果表明:经300 ℃×2 h和400 ℃×2 h的中间退火处理后,AlMgSiCu合金强度指标并未发生明显的改变。加工硬化指数(n)值和塑性应变比(r)值随中间退火温度的提高,呈现增加的趋势。经400 ℃×2 h中间退火处理后,n值达到了0.286,r值达到了0.623,大部分晶粒已演变为等轴晶粒。试样基体内主要存在3种形式的第二相,尺寸在1 μm左右的AlFeMnSi颗粒相,宽度在0.1 μm左右的长棒状AlMgSiCu相和球状Si颗粒相。长棒状AlMgSiCu相随着中间退火温度的升高先析出后溶解。无中间退火的板材,Brass{011}<211>织构和S{123}<634>织构的体积分数最高,分别达到了13.9%和25.7%。经400 ℃×2 h中间退火的试样,以Cube{001}<100>织构为主,体积分数达到了24.3%,r-Cube织构达到了10.5%。  相似文献   

6.
利用Gleeble-3500热模拟系统和电子背散射衍射(EBSD)技术对5083铝合金的超快速退火组织演变规律进行研究,探讨了快速加热速度、退火温度及冷轧变形量对5083铝合金晶粒尺寸的影响。结果表明,5083铝合金经80%的冷轧变形后分别以25、250、500℃/s的加热速度升温至450℃保温3s后以40℃/s冷却时,平均晶粒尺寸随加热速度的增加由7.43μm细化至4.98μm。5083铝合金经80%冷轧变形后在不同退火温度(350、400、420、450和500℃)下进行超快速退火(加热速度500℃/s,保温时间3 s,冷却速度40℃/s)后,所得晶粒尺寸先减小再增大,在420℃退火时,晶粒尺寸达到最小,为4.82μm。再结晶晶粒尺寸受晶界迁移速率和形核率的耦合作用,在350~420℃超快速退火时,由于快速加热使形核率急剧增大,而形核温度较低,使晶界迁移速率较小,导致晶界迁移速率小于形核率,因而再结晶晶粒尺寸由5.23μm细化至4.82μm;在420~500℃超快速退火时,形核温度变高,晶界迁移速率快速增大,则晶界迁移速率大于形核率,使合金晶粒由4.82μm粗化至6.20μm,420℃是5083铝合金晶界迁移速率和形核率之间竞争的一个临界点。5083铝合金经50%、60%、71.4%、80%和87.5%的冷轧变形后以500℃/s的超快速加热速度升温至450℃保温3 s后以40℃/s冷却,所得平均晶粒尺寸分别为7.94、6.82、6.03、4.98和4.84μm,随轧制变形量的增大晶粒尺寸减小,但是冷轧制变量达到80%以后再进行超快速退火晶粒尺寸减小不明显。  相似文献   

7.
杨龙  代敏  车云  门三泉  李祥 《铸造技术》2023,(3):268-273
本文研究了5A83铝合金均匀化退火工艺,并探索了不同温度条件对其微观组织及性能的影响。在退火时长为15 h的情况下,分别观察了350、400、440、470、485、540℃6种不同退火温度下的显微组织变化,测量了其晶粒尺寸与硬度。结果表明,β相和Mn相交互作用的特征为:当退火温度低于400℃时,β相的回溶与过饱和Mn相的析出同时进行,后者对晶粒粗化的作用掩盖了前者对晶粒的细化作用;当退火温度高于440℃时,Mn相的回溶对晶粒细化发挥主导作用,对反常态(随着均匀化退火温度升高,基体硬度先下降后上升)给出了合理解释,并认为485℃是最为理想的退火温度。  相似文献   

8.
利用金相显微镜、扫描电镜与透射电镜等手段对6016铝合金汽车车身外板包边试验样品进行微观组织分析。结果表明,当板材表面、纵截面与横截面晶粒组织均匀、细小(30μm以下)时,有助于加工变形过程中晶粒之间协调变形及应力传递,可保证包边产品的表面质量;控制合金中含铁相尺寸能减少板材轧制后大尺寸粒子间残存的空洞,有助于降低包边产品开裂的可能性;干净无弥散相析出的晶界可减少包边过程中产生的应力集中。  相似文献   

9.
《塑性工程学报》2020,(2):108-113
以Ti-3. 5Al-5Mo-6V-3Cr-2Sn-0. 5Fe合金为研究对象,研究了冷轧过程中不同中间退火温度对合金轧制态、固溶态和时效态组织以及性能的影响。研究表明,冷轧板材的主要强化机制是加工硬化,轧程中间退火制度对加工硬化现象影响显著,α+β相区中间退火合金相比于β单相区中间退火合金加工硬化程度大,强度高,但伸长率低。冷轧合金板材经过750℃固溶处理2 min后晶粒尺寸显著细化,β单相区中间退火晶粒尺寸比α+β相区晶粒尺寸大。经过固溶处理后合金主要强化机制为细晶强化,α+β相区中间退火合金的晶粒尺寸小,强度和伸长率高于β单相区中间退火合金。冷轧合金板材经过750℃固溶处理2 min加550℃时效处理4、8和16 h后,在β基体上形成了大量的次生α相,随着时效时间的增长,次生α相的尺寸明显增大,合金强度先升高后下降,伸长率一直增加。α+β相区中间退火的合金形成了等轴的初生α相,其强度和伸长率均高于相同热处理状态下β单相区中间退火的合金。  相似文献   

10.
热处理对Al-Zn-Mg-Cu合金第二相粒子分布和晶粒尺寸的影响   总被引:1,自引:0,他引:1  
通过对均匀化改锻后的坯料进行了固溶+过时效和直接过时效的中间热处理,分析了新型Al-Zn-Mg-Cu高强铝合金经过不同中间热处理后微观组织中第二相粒子的大小和分布特征,以及第二相粒子分布特征对随后热变形和退火工序过程中晶粒尺寸演变的影响。结果表明,锻坯经过400 ℃×12 h直接过时效中间处理后,组织中第二相粒子的尺寸呈现“双峰”分布特征;把具有该组织特征的试样加热到420 ℃的始锻温度,进行50%的压缩变形,再经400 ℃×1 h退火处理后,得到比较均匀细小的晶粒组织。  相似文献   

11.
试验研究了退火温度对AZ31镁合金挤压棒组织和织构的影响.结果表明:铸态镁合金挤压后,初始强点织构向(80°,90°,0°)面聚集,主要织构组分强度提高.对热挤压后的AZ31镁合金进行退火,可以细化晶粒,使组织均匀,300℃退火时平均晶粒尺寸5μm为最小;随着退火温度的升高,形变织构(80°,90°,0°)逐渐减弱,再结晶织构(0°,90°,0°)和(90°,55°,0°)逐渐增强,300℃退火之后二者均被弱化,400℃退火之后取向分布漫散度增大.  相似文献   

12.
采用硬度测试、拉伸试验和透射电镜等手段研究了不同预时效处理对6016铝合金烘烤前后微观组织和力学性能的影响。结果表明:6016铝合金具有较强的自然时效硬化能力,自然时效24 h的6016铝硬度比固溶态合金硬度增加了45.6%。自然时效超过24 h以后,合金硬度值变化不大。通过预时效处理可以显著提高6016铝合金的烘烤硬化效果。经550 ℃×30 min固溶+160 ℃×10 min预时效处理后,6016铝合金规定塑性延伸强度为131.4 MPa,伸长率为24.7%。再经175 ℃×30 min烘烤后合金规定塑性延伸强度达到199.5 MPa,烘烤硬化值(BH)为68.1 MPa,此工艺为6016铝合金车身板最佳的热处理工艺。  相似文献   

13.
系统研究了预变形温度对Al-Zn-Mg铝合金微观组织结构及力学性能的影响。运用光学显微镜和透射电镜观察了微观组织,扫描电镜表征了拉伸断口形貌,X射线衍射仪测试了宏观织构构成,万能拉伸试验机测试了力学性能。结果表明,在400 ℃的热轧温度下,力学性能指标最佳,屈服强度和抗拉强度分别达到325 MPa和455 MPa,伸长率达到14%。不同热轧温度下的拉伸试样断口均呈现为韧性断裂,断口处均存在数量和尺寸不一的韧窝。400 ℃热轧变形温度下,晶粒内部的位错缠结消失,形成了晶界附近规则排列的位错墙;450 ℃时,晶内的位错消失,主要为再结晶晶粒。在350 ℃和400 ℃热轧变形温度下,织构中存在明显的剪切织构,包括旋转立方织构{001}<110>和黄铜R织构{111}<112>和{111}<110>。450 ℃热轧变形温度下,出现明显的再结晶织构CubeND {001}<310>。  相似文献   

14.
研究了喷射沉积制备2195铝锂合金锭坯挤压板坯经不同终轧温度热轧至6mm厚度板材,以及经不同中间退火后再冷轧至6mm厚度板材固溶后的晶粒组织。结果表明,终轧温度290℃时,热轧板固溶后表层为粗大再结晶晶粒,而中心层为细长纤维状晶粒;终轧温度降低至220℃时,虽然表层再结晶晶粒尺寸减小,但中心层转变为尺寸粗大的长条状再结晶晶粒。板材中尺寸1μm以上的富Cu第二相粒子数量随中间退火(空冷)温度的增加(从330℃提高至450℃)而增加;冷轧固溶后表层等轴状再结晶晶粒尺寸增加,而中心层晶粒逐渐由粗大长条状再结晶晶粒转变为细小等轴状再结晶晶粒。适当温度中间退火、随炉冷却并冷轧、固溶后表层和中心层全部为细小等轴状再结晶晶粒。优化中间退火后的冷轧板材T8时效态强度最高,而终轧温度220℃的热轧板材T8时效态强度最低。  相似文献   

15.
利用热分析仪、光学显微镜、扫描电镜和能谱仪等方法研究了3003-H16铝合金卷材生产过程中的组织演变。结果表明,晶粒尺寸、二次枝晶间距和金属间化合物尺寸从铸锭心部至铸锭表层逐渐减小。当均匀化温度为590 ℃时,α-Al晶体内析出细小颗粒状的Al6Mn;随均匀化温度的提高,颗粒状析出相不断溶解并促进针棒状析出相长大;当均匀化温度为640 ℃时,针棒状析出相开始溶解,至650 ℃时完全溶解。金属间化合物Al6(Fe,Mn)和Al6Mn随均匀化温度的升高而变得圆滑球化,部分Al6(Fe,Mn)在均匀化过程中转变为Al(Fe,Mn)Si。3003铝合金热轧卷材的晶粒组织在厚度方向上存在不均匀性,冷轧和中间退火后有所改善。3003铝合金卷材中的化合物沿轧制方向成行排列,具有明显的方向性,其中大尺寸化合物的比例随加工率的增大逐渐降低。均匀化可以改善3003铝合金的成分和组织均匀性,改善合金的塑性。变形加工在提高3003铝合金强度的同时降低了合金的塑性。中间退火过程中纤维状的变形组织转变为再结晶组织,消除了硬化现象,合金的塑性得到改善。  相似文献   

16.
The microstructure evolution and high thermal stability of the mechanically-alloyed supersaturated nanocrystalline Cu-10%Nb alloy during subsequent heat treatment were investigated by X-ray diffractometry and transmission electron microscopy (TEM). The results show that no significant change of the microstructure of the solid solution can be detected after annealing at 300-400 ℃. The pronounced phase separation can be detected at 700 ℃. After annealing for 30 min at 900 ℃, almost all the Nb atoms precipitate from the solid solution, and the average Cu grain size is about 37 nm. As the solute atoms hinder the migration of fcc phase, at Cu grain boundaries, no significant grain growth occurs before large amount of Nb atoms precipitates from Cu matrix, and the decrease of internal strain and density of dislocation is small. Furthermore, the nanosized Nb precipitates can also help to reduce the Cu grains growth through precipitating pinning effect. Therefore, the mechanically-alloyed nanocrystalline Cu-Nb alloys have a high thermal stability. And the contaminations brought into the Cu matrix by milling can influence the phase formation and the thermal stability of Cu-Nb alloys during heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号