首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用海藻酸钠-壳聚糖作为载体对磷脂酶A2进行固定,以固定化酶的活力回收率为指标,通过单因素实验和响应面分析对固定化条件进行优化,最优固定化条件为:海藻酸钠浓度2.0%,壳聚糖浓度2.0%,钙离子浓度0.25mol/L,戊二醛质量百分浓度0.3%,交联时间7h,此时固定化酶活力回收率达到74.8%;对固定化酶酶学性质进行研究,其最适温度为55℃,最适pH为5.0。该固定化酶重复使用7次后活力可以保持54%以上。扫描电子显微镜(SEM)结果也显示海藻酸钠-壳聚糖能较好的固定磷脂酶A2。  相似文献   

2.
对主要采用海藻酸钠-壳聚糖固定化碱性蛋白酶做了研究。在各项单因素试验基础的上,以固定化酶的酶活回收率为指标,采用响应面优化方法确定固定化碱性蛋白酶的最优条件。得到的最佳条件为,海藻酸钠浓度为3.00%,游离酶稀释倍数10.09,交联时间1.00 h,壳聚糖浓度3.76%,氯化钙浓度3.35%,响应面最优值为70.44%±1.03%。该固定化碱性蛋白酶的最适p H为10,最适温度为65℃,制得的固定化酶的热力学稳定性及酶学性质都比较好,在重复使用5次后酶活力仍可保持在65%。  相似文献   

3.
采用海藻酸钠-壳聚糖固定化碱性果胶酶,通过对固定化酶活力回收率影响条件的讨论,确定碱性果胶酶固定化的最优条件为:海藻酸钠3%,碳酸钙1.5%,游离酶1 500 U/g,乳化时间50 min,乳化剂MOA-3用量0.4 mL/L,转速500 r/min,壳聚糖1.5%。结果表明:固定化酶活力回收率达到69.23%。制备的固定化酶最适pH为9,最适温度为60℃,这种固定化酶比游离酶的耐热性和耐碱性有明显提高,而且固定化操作稳定性较好,重复利用5次后,酶活力仍可保持原来的60%。  相似文献   

4.
D-阿洛酮糖3-差向异构酶(DPEase)是一种能催化D-果糖转化为D-阿洛酮糖的异构酶。本实验采用海藻酸钠作为载体,包埋重组大肠杆菌催化D-果糖生成D-阿洛酮糖。以固定化细胞的酶活活力回收率为指标,优化出最佳固定化条件为:海藻酸钠浓度3%,细胞包埋量60g/L,Ca Cl2浓度2%,固定化时间4h,0.01%浓度戊二醛溶液中交联4h。该条件下所得固定化细胞的酶活回收率高达76%,且具有较好的操作稳定性,重复操作8次后酶活回收率仍然保持61%。固定化后DPE细胞的最适酶反应温度提高了5℃、最适pH与游离细胞基本一致,耐热性明显提高,p H稳定性与游离细胞一致。  相似文献   

5.
固定化亚油酸异构酶制备及其性质   总被引:1,自引:0,他引:1  
魏明  杨超英  钱森和 《食品科学》2012,33(7):153-157
以海藻酸钠、壳聚糖为载体,分别采用直接包埋、交联-包埋法制备固定化亚油酸异构酶;研究酶的固定化条件和固定化酶的部分性质。结果表明:以海藻酸钠为载体,采用交联-包埋法以戊二醛为交联剂时固定化效果较好;最佳固定化条件为:海藻酸钠质量浓度为3g/100mL,戊二醛质量浓度为0.3g/100mL,CaCl2质量浓度为2g/100mL;固定化酶的最适反应温度为50℃,最适反应pH值为5.0;与游离酶相比,固定化酶的热稳定性显著提高,温度在20~60℃之间较稳定,pH值在2~8之间表现出较好的酸碱耐受性;固定化亚油酸异构酶的Km为0.36mg/mL。连续操作6次固定化相对酶活力仍保持70.6%,与游离酶相比,固定化亚油酸异构酶催化效率约提高了50%。  相似文献   

6.
分别以海藻酸钠、壳聚糖为载体,采用包埋-交联法固定β-呋喃果糖苷酶。对固定化过程中氯化钙浓度、戊二醛浓度、加酶量、包埋时间、交联时间等因素进行考察;采用正交试验设计对载体制备与酶固定化中的主要条件进行优化。通过对固定化酶活力回收比较,壳聚糖固定化酶活力回收率优于海藻酸钠。  相似文献   

7.
以粉末状壳聚糖为载体 ,采用吸附 -交联的方法将 α-葡萄糖苷酶固定化。最适固定化条件研究表明 ,0 .1 g壳聚糖与 2 4 ,0 0 0 U(0 .0 8ml) α-葡萄糖苷酶进行固定化 ,在p H6.0条件下 ,室温吸附 6h,然后与 3.5%的戊二醛在 45℃交联 6h,可得到固定化酶的活力为 1 4,30 0 U,酶活力回收率为59.6%。通过实验发现 ,与游离酶相比 ,固定化酶的最适 p H向酸性方向移动 0 .5p H单位 ,为 p H4.5;最适作用温度达到70℃ ,比游离 α-葡萄糖苷酶提高 5℃ ;酸碱稳定性、热稳定性及贮存稳定性均有较大提高 ;在 60℃操作半衰期为 1 68h  相似文献   

8.
采用壳聚糖微球一戊二醛交联的方法固定木聚糖酶,探讨壳聚糖浓度、戊二醛体积分数和交联时间对固定化酶相对酶活力的影响.以正交试验确定木聚糖酶的最佳固定化条件,比较固定化酶与其游离酶的最适反应pH值、pH值稳定性、最适反应温度及热稳定性.结果表明,在壳聚糖质量浓度0.1g/mL、戊二醛添加量3%、给酶量2000U/g载体、交联时间2.5h时,固定化酶的回收率较高,可达到65.38%,同时固定化和游离酶的最适温度分别为60℃、55℃,最适pH值分别为4.5、5.0,热稳定性有不同程度的提高,pH稳定性两者变化不大.木聚糖酶的固定化能有效地提高其作用性能,从而为木聚糖酶的工业化应用提供了一定的理论依据.  相似文献   

9.
壳聚糖固定化α-葡萄糖苷酶的研究   总被引:21,自引:0,他引:21  
以粉末状壳聚糖为载体 ,采用吸附 交联的方法将α 葡萄糖苷酶固定化。在最适固定化条件下 ,室温吸附 6h ,然后与 3 5%的戊二醛在 4 5℃交联 6h ,可得到固定化酶的活力为1430 0U ,酶活力回收率为 59 6 %。通过实验发现 ,与游离酶相比 ,固定化酶的最适 pH向酸性方向移动 0 5pH单位 ,为 pH 4 5;最适作用温度达到 70℃ ,比游离α 葡萄糖苷酶提高 5℃ ;酸碱稳定性、热稳定性及贮存稳定性均有较大提高 ;在 6 0℃操作半衰期为 16 8h  相似文献   

10.
磷脂酶固定化方法的研究   总被引:1,自引:0,他引:1  
分别采用海藻酸钠、海藻酸钠-壳聚糖和海藻酸钠-明胶固定化磷脂酶,研究发现固定化磷脂酶最适反应温度比游离酶提高10℃左右,反应适宜pH范围明显变宽.海藻酸钠-壳聚糖固定化磷脂酶的热稳定性最好,操作稳定性由强至弱为海藻酸钠-明胶固定化酶、海藻酸钠-壳聚糖固定化酶、海藻酸钠固定化酶,重复使用4次后酶相对活力分别为80%、80%和50%.固定磷脂酶的最佳载体为海藻酸钠-壳聚糖.  相似文献   

11.
磁性壳聚糖、海藻酸钠固定β-呋喃果糖苷酶研究   总被引:1,自引:0,他引:1  
分别以海藻酸钠、壳聚糖复合Fe3O4为载体,采用包埋―交联法固定β–呋喃果糖苷酶。对固定化过程氯化钙浓度、戊二醛浓度、加酶量、包埋时间、交联时间等因素进行考察;并采用正交试验对载体制备与酶固定化中主要条件进行优化;通过对固定化酶活力回收比较,磁性海藻酸钠固定化酶活力回收率优于磁性壳聚糖。  相似文献   

12.
以壳聚糖为载体,戊二醛为交联剂,采用吸附交联法对黑曲霉(Aspergillus niger)β-葡萄糖苷酶进行了固定化。考察了固定化pH、戊二醛含量、吸附时间、交联时间和壳聚糖微球加入量等对固定化酶活力回收率的影响,在单因素试验的基础上,采用正交试验设计确定最佳固定化条件为固定化pH 5.0、戊二醛含量3.0%、吸附时间12 h、交联时间2 h、壳聚糖微球加入量0.91 g/IU,此时固定化酶活力回收率达到87.0%。固定化和游离β-葡萄糖苷酶的最适p H值均为4.2,最适温度分别为65℃和60℃,固定化酶具有更高的耐酸碱性和热稳定性。  相似文献   

13.
以海藻酸钠和明胶为载体,对L-阿拉伯糖异构酶进行固定化。为增强固定化酶的稳定性,又用戊二醛对其进一步交联。研究了海藻酸钠及明胶浓度、CaCl2浓度、硬化时间以及戊二醛浓度等因素对固定化效果的影响,并对固定化酶的酶学性质进行了研究。结果表明最佳固定化条件为:海藻酸钠浓度2.0%、明胶浓度2.0%、硬化时间6h、CaCl2浓度4.0%、戊二醛浓度0.02%,该条件下所得酶活回收率最高为82%,且具有较好的操作稳定性,重复操作7次后酶活损失不到50%。与游离酶相比,固定化酶的最适反应pH及反应温度没有变化,但pH稳定性和耐热性都有所提高。  相似文献   

14.
以海藻酸钠、卡拉胶共混包埋制备固定化木瓜蛋白酶,并对木瓜蛋白酶固定化条件和固定化酶的部分性能进行了探讨.在海藻酸钠浓度1.5%、卡拉胶浓度0.8%、木瓜蛋白酶浓度1.0%、氯化钙浓度4.0%、固定化时间11h、固定化温度为35℃、固定化pH7.5的条件下,可以获得最佳的固定化效果,固定化酶活力回收率为56.27%.与游离酶相比,制备固定化酶的最适酶促反应pH由7.0降至6.5,最适酶促反应温度由40℃升至50℃,其作用温度范围、pH范围均比游离酶范围宽.  相似文献   

15.
采用壳聚糖为吸附载体,戊二醛为交联剂,对胃蛋白酶进行固定化。以固定化酶活力回收率为指标,通过响应面分析法优化固定化胃蛋白酶的工艺参数,并对固定化酶的稳定性进行研究。结果表明:胃蛋白酶的最优固定化工艺为壳聚糖含量2.50%,固定化时间3.40 h,固定化温度35℃,固定化酶的活力回收率达74.38%±0.13%。固定化酶在温度30~60℃时,相对酶活保持在70.03%~74.22%;在pH 1.5~4.0时,相对酶活保持在70.33%~83.67%,其最适使用温度和pH值分别为55℃,3.0;该固定化酶重复使用4次后,酶活力回收率仍保持在50%以上;将此固定化酶放入4℃冰箱保存5周后使用,酶活力未见明显下降,表明本法固定的胃蛋白酶对热和酸碱是稳定的,且操作和贮藏稳定性均较好。  相似文献   

16.
对采用海藻酸钠固定化碱性蛋白酶的方法和酶学性质进行了研究。在单因素实验基础上,采用响应面优化方法确定固定化的最优条件,得到的最佳条件为:海藻酸钠浓度3.1%,pH9.4,CaCl2浓度3.0%,游离酶添加量10000U/g,时间1.8h,固定化酶活力可达5518U/g。固定化酶的最适pH为10,最适温度为60℃,制得的固定化酶的热力学稳定性和操作稳定性较好。此外,固定化酶重复利用5个循环后酶活力仅降低40%。  相似文献   

17.
采用海藻酸钠包埋法和壳聚糖交联法固定化鳞杯伞产生的α-半乳糖苷酶,通过比较固定化酶和游离酶的最适pH、pH稳定性、最适温度、温度稳定性、保存时间及两种固定化酶对豆浆中低聚糖的水解作用及操作稳定性等,探究较适宜于鳞杯伞α-半乳糖苷酶的固定化载体。结果表明:鳞杯伞α-半乳糖苷酶最佳硫酸铵饱和度为80%;两种固定化方法酶活性保持率都达到了50%以上,且固定化酶的温度稳定性、pH稳定性、保存时间相比游离酶都有提升;比较两种固定化酶,壳聚糖固定化酶的温度、酸度稳定性及操作稳定性要优于海藻酸钠固定化酶,但保存时间和对豆浆中低聚糖的水解效率要低于后者,两种固定化酶重复使用3次后低聚糖水解率在85%以上,相比于海藻酸钠,壳聚糖更适宜作为鳞杯伞α-半乳糖苷酶的固定化载体。  相似文献   

18.
以壳聚糖为栽体,戊二醛为交联剂,采用交联一吸附法对胰蛋白酶的固定化条件进行了初探.结果表明:酶用量、戊二醛浓度、pH值、温度等对壳聚糖微球固定化的胰蛋白酶活力有显著影响.最适固定化条件:壳聚糖0.125 g,酶用量14mg,交联剂质量分数0.2%,pH值为7.5,固定化温度35℃,交联时间2 h,吸附时间5 h.在此条件下酶活力回收率为76.57%.  相似文献   

19.
以海藻酸钠为载体,戊二醛为交联剂,采用交联-包埋-交联法对柚(皮)苷酶进行了固定化。在单因素实验基础上,通过正交实验得到海藻酸钠固定化柚(皮)苷酶的最优工艺条件:海藻酸钠质量浓度3.0%,给酶量为0.01mg/g载体,前交联戊二醛体积分数2.0%,前交联时间1.5h,后交联戊二醛体积分数0.025%,后交联时间2h,制备的固定化酶最高活力5.07U/g。同时,对固定化柚(皮)苷酶的稳定性进行了研究,结果表明:固定化酶的温度耐受性与存储稳定性较游离酶有较大幅度的提高;固定化酶重复使用7次(60℃,pH4.0)后,活力仍然保持在60%。  相似文献   

20.
采用海藻酸钠包埋法和戊二醛交联法两种固定化方法,对来源于Klebsiella sp. LX3的蔗糖异构酶PalI的稳定性和可重复利用性进行研究。结果发现,海藻酸钠包埋法在海藻酸钠、CaCl_2质量分数为1.5%、2%时,所得固定化酶的酶活最高,其最适反应温度为40℃,最适pH值为6;戊二醛交联法在(NH_4)_2SO_4质量分数为90%,戊二醛体积分数为2. 5%时得到的固定酶酶活最高,交联酶的最适反应温度为50℃,最适pH值为5,通过对酶的稳定性比较,两种方法酶稳定性都优于游离酶。4℃保存20 d后游离酶的酶活降低到30%,而戊二醛交联酶活性在95%以上,海藻酸钠固定化酶残余酶活仍在60%左右。戊二醛交联法固定酶活性优于海藻酸钠固定化酶,重复利用12次戊二醛交联酶,其残余酶活仍为80%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号