首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   1篇
工业技术   115篇
  2023年   4篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   19篇
  2018年   20篇
  2017年   14篇
  2016年   14篇
  2015年   13篇
  2014年   7篇
  2013年   4篇
  2012年   9篇
  2011年   3篇
排序方式: 共有115条查询结果,搜索用时 93 毫秒
1.
采用水酶法分别制备油茶籽油、花生油、核桃油、葵花油和大豆油,通过化学方法和中红外光谱技术对5种油脂在加速氧化过程中的稳定性进行研究。不同植物油的脂肪酸组成存在显著差异,油茶籽油和花生油的单不饱和脂肪酸含量大于多不饱和脂肪酸含量,而核桃油、葵花油和大豆油均含有大量的多不饱和脂肪酸,且含量均在50%以上。在整个加速氧化过程中,随着加热时间的延长,共轭二烯值和共轭三烯值逐渐增加。5种油脂的氧化稳定性由大到小依次为油茶籽油花生油核桃油葵花油大豆油。采用中红外光谱法对油脂氧化稳定性进行分析,再次印证了对共轭二烯值和共轭三烯值的分析结果。  相似文献   
2.
水酶法提取榛子蛋白工艺优化   总被引:2,自引:0,他引:2  
以榛子仁为原料,利用Alcalase碱性蛋白酶水解,进而提取榛子蛋白。以榛子仁总蛋白提取率为指标,对影响因素进行研究。在单因素试验的基础上采用响应面法优化工艺条件,得到最佳酶解条件:加酶量2.0%、温度55℃、酶解时间2.5h、料水比1:5(g/mL)、pH8.9。由F检验可得因素贡献率为x1>x2>x4>x5>x3,即加酶量>酶解温度>料液比>酶解pH值>酶解时间。  相似文献   
3.
对不同品种大豆分离蛋白(soybean protein isolate,SPI)的表面疏水性、氨基酸组成及溶液的Zeta电位和粒径分布进行分析,探讨蛋白质溶液Zeta电位和粒径分布与表面疏水性的关系。不同品种SPI的表面疏水性由大到小的变化趋势为:东农46皖豆24黑农46五星4中黄13冀NF58,品种差异对SPI的Zeta电位及粒径分布具有显著影响。相关性分析表明,SPI表面疏水性与氨基酸组成无显著相关性,表面疏水性与Zeta电位绝对值呈显著的正相关,与粒径大小呈显著的负相关。当蛋白溶液Zeta电位绝对值较大时,蛋白表面更多同性电荷间的排斥作用会减少蛋白分子的相互聚集,使蛋白溶液趋于稳定,同时降低蛋白质粒径大小。此时,蛋白质疏水基团的内卷程度降低,并更多暴露在分子表面,导致蛋白质表面疏水性增加。  相似文献   
4.
大豆分离蛋白和大豆卵磷脂在中性条件下(pH 7.0)复合后,可自发组成蛋白质-磷脂复合体系,但仍有部分未自组装的蛋白质和磷脂存在于溶液中。为实现蛋白质-磷脂最大程度复合,解析复合体系功能性质与大豆蛋白二级结构间的构效关系,本研究采用"超声改性-结构变化-功能表达"的研究理念,采用傅里叶变换红外光谱法研究体系结构变化,测定持水性、持油性、凝胶质地剖面并分析其功能性质。结果表明:超声处理会显著改善大豆蛋白-磷脂复合体系的功能性质,超声时间较短时,持水性、持油性等功能性质随功率的增加先升高后降低;超声时间较长时,功能性质随功率的增加持续降低。傅里叶变换红外光谱分析发现低、中功率条件下,大豆蛋白二级结构中β-折叠相对含量较多而α-螺旋结构相对含量较少,说明大豆蛋白与磷脂间的交互作用更明显。超声波作用下复合体系凝胶质地剖面分析表明,功能性质与蛋白质的二级结构改变具有一定的关联性。以上结果说明,适当的超声处理有助于改变大豆蛋白-磷脂复合体系的结构并提升其功能性质。  相似文献   
5.
通过不同酶解时间得到大豆溶血磷脂,对大豆分离蛋白-溶血磷脂相互作用及其对复合乳化体系乳化特性的影响进行探究,采用荧光光谱法在Stern-Volmer和Van’t Hoff方程基础上对大豆分离蛋白-溶血磷脂荧光猝灭作用、相互结合常数、结合位点及相互作用力类型进行判断,并对复合乳化体系分别进行乳化活性、乳化稳定性的测定及微观结构变化的观察。结果表明:随着磷脂酶A1酶解时间的延长,大豆分离蛋白-溶血磷脂相互作用先增强后下降,乳化特性指标同样基本呈现先升高后降低的趋势,这表明二者的相互作用对乳化特性具有一定影响。其中,当酶解时间为4 h时,二者相互作用最强,乳液的乳化特性表现最佳,这表明适度酶解产生的溶血磷脂会促进其与大豆分离蛋白的相互作用,在水油界面上形成较稳定的界面膜,形成稳定的复合乳状液。  相似文献   
6.
研究超声波低功率(100 W)、中功率(300 W)和高功率(450 W)在不同的时间条件下(12、24 min)对大豆分离蛋白-磷脂复合体系结构和功能性质的影响。扫描电子显微镜及流变学实验显示低、中功率超声波处理形成的凝胶结构致密均匀、弹性模量G’较高,且300 W条件下处理24 min时,样品凝胶性质最好。采用光谱学实验验证后发现,大豆分离蛋白-磷脂复合体系构象的变化是影响其凝胶性质的主要因素;拉曼光谱实验结果表明:超声波改变了大豆分离蛋白的二级结构以及色氨酸、酪氨酸所处的微环境,暴露疏水性基团,使其更易与大豆卵磷脂发生疏水相互作用,且低、中功率条件下超声波对大豆分离蛋白和磷脂交互作用的影响较大。超声波功率进一步增大(450 W)使大豆分离蛋白发生不溶性聚集,减弱了与磷脂间的相互作用,复合体系的功能性质随之下降。  相似文献   
7.
研究不同强度的超声波(150、300、450 W)在12 min和24 min处理时间下对大豆分离蛋白-磷脂相互作用程度的影响,同时揭示了复合体系功能性质随超声条件变化的规律。通过圆二色光谱、粒径分布、ζ-电位、溶解度以及乳化性指标的测定发现:当超声波处理时间为12 min时,中功率(300 W)超声波对大豆分离蛋白-磷脂复合体系的影响最大,α-螺旋含量降低,溶解度及乳化性较高。当超声时间延长至24 min时,低功率(150 W)超声波会明显增加大豆分离蛋白-磷脂复合体系的乳化性,同时体积平均粒径由未超声样品的16.87 μm减小至6.49 μm、ζ-电位绝对值增大,α-螺旋含量降低至7.6%,溶液分散均匀且性质稳定。但随着超声波功率的进一步增大,蛋白质发生不溶性聚集,导致其与磷脂间的相互作用变弱,复合体系的各项功能性质随之下降。这表明超声波处理会影响大豆分离蛋白与磷脂相互作用的程度,适宜强度的超声波处理有利于复合体系功能性质的提升。  相似文献   
8.
采用乙醇冷浴破乳法对水酶法提取大豆油过程中形成的乳状液和水解液进行破乳研究,确定乙醇冷浴破乳最佳工艺条件为:乙醇体积分数80%,酶解液与乙醇体积比1∶1,冷浴温度-30℃,冷浴时间30min。对常温乙醇破乳、冷冻解冻破乳、乙醇冷浴破乳3种方法进行比较,发现采用乙醇冷浴破乳法优势明显,具有较高破乳率(93.64%)和游离油得率(88.79%)。通过显微切片观察可知,对乳状液进行常温乙醇破乳和冷冻解冻破乳后,仍有一小部分油滴存在于油水界面间剩余的黏稠物中不能被释放;而采用乙醇冷浴破乳可使起乳化作用的蛋白质等物质变性沉淀,油水界面已经不存在黏稠物,几乎达到完全破乳。此外,与乳状液相比,水解液中的脂肪球暴露的更多,且彼此靠的更近,这说明水解液中脂肪球更易于聚集成油滴而被释放。  相似文献   
9.
采用超声联合转谷氨酰胺酶(transglutaminase,TG)处理红豆分离蛋白(red bean protein isolate,RBPI),对其功能性质和结构特征进行分析,以探究其结构修饰与功能性质的构效关系。结果表明:超声处理5 min能够使RBPI的乳化活性和发泡能力提高,但会降低泡沫稳定性,对乳液稳定性没有显著影响,同时增加表面疏水性和游离巯基含量;TG能够提高RBPI的乳化活性、乳化稳定性及泡沫稳定性,但会降低发泡能力、表面疏水性和游离巯基含量;超声-TG联合处理的RBPI具有更高的乳化活性和泡沫稳定性,更低的表面疏水性和游离巯基含量,且酰胺Ⅰ带处吸收峰强度增加,更多的无规卷曲结构转变为有序的β-折叠结构,这可能是导致RBPI功能性质改善的原因。超声处理5 min联合TG诱导的蛋白凝胶具有更加均匀、致密的微观结构,且凝胶硬度和黏附力增加,脱水收缩作用降低;峰值温度(Tp)和热焓变(ΔH)显著增加(P<0.05),改善了RBPI的热稳定性或三级结构稳定性。以上结果表明RBPI经过超声处理后更利于TG对蛋白质的交联作用,超声-TG联合处理促进了蛋白质功能性质的发挥。  相似文献   
10.
测定生物解离大豆膳食纤维理化及功能特性,研究其对面粉粉质特性及面团质构特性的影响,并明晰其对饼干质构特性及消化特性的改善作用。结果表明,生物解离大豆膳食纤维纯度为81.34%,可溶性膳食纤维占比50.83%,理化及功能特性相比于豆渣膳食纤维均有所提高。当生物解离大豆膳食纤维在面粉中添加量为30%时,面粉粉质特性及面团质构特性最佳,此添加量制作饼干质构特性高于市售纤维饼干,且消化速率也明显低于另外2?种饼干,快速消化淀粉质量分数相比于市售纤维饼干及普通饼干分别降低17.14%、42.57%,慢速消化淀粉质量分数分别提高24.93%、110.27%,抗性淀粉质量分数分别提高0.85%、21.57%,且血糖指数仅为45.99,已处于低糖食物水平范畴。因此生物解离大豆膳食纤维具有良好的理化性质及功能特性,可作为一种新型大豆膳食纤维来源在烘焙品中进行应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号