首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bi3+ doped molybdate-based red-emitting phosphors, LiEu1-xBix(MoO4)2, were successfully synthesized with a sol-gel method. The prepared LiEu1-xBix(MoO4)2 phosphors exhibited pure and intense red emission at 613 nm under the excitation of near-UV 394 nm. It was discussed in detail that the influence of the synthesis conditions such as the doping concentration of Bi3+, the dose of citric acid, pH of the precursor solution and the sintering temperature on the emission intensity of the phosphors. According to the results, the optimal condition was obtained: the doping concentration of Bi3+ was 15 mol.%, molar ratio of citric acid to metal ions was 1.5:1, pH of the precursor solution was 1.0 and the sintering temperature was 800 ?C. The X-ray diffraction (XRD) patterns of the LiEu0.85Bi0.15(MoO4)2 phosphor prepared under the optimal condition indicated that the phosphor was single phase with tetragonal scheelite structure. The Commission Internationale de l’E-clairage (CIE) chromaticity coordinates of LiEu0.85Bi0.15(MoO4)2 were (x=0.655, y=0.345), which were closer to the national television stan-dard committee (NTSC) standard values (x=0.670, y=0.330) than that of a commercial red phosphor of Y2O2S:Eu3+(x=0.630, y=0.350). This LiEu0.85Bi0.15(MoO4)2 red phosphor is a promising candidate for the fabrication of white light-emitting diode (W-LED) with near-UV chips.  相似文献   

2.
A series of LiY1-xEux(MoO4)2 red-emitting phosphors were synthesized by sol-gel technique. The phase impurity and spectroscopic properties were characterized by X-ray diffraction (XRD) and photo-luminescence (PL) spectra respectively. The effect of Eu3+ doping con-centration, annealing temperature and the molar ratio of citric acid to the total metal cations (C:M) on the optical properties of the red phos-phors were studied and optimized. It was found that all the samples could be excited efficiently by blue light (465 nm), which was well coin-cident with the emission of GaN based LED chips. The luminescent intensity reached maximum when annealing temperature was 750 ?C and Eu3+ doping concentration was 5% with C:M=3:1.  相似文献   

3.
Novel red-emitting phosphors Sr2MgSi2O7:Eu3+ were prepared by gel-combustion method assisted by microwave. The phase struc-ture and luminescent properties of as-synthesized phosphors were investigated by XRD and fluorescence spectrophotometer, respectively. The results showed that the as-synthesized sample was Sr2MgSi2O7 with tetragonal crystal structure. The excitation spectrum of Sr2MgSi2O7:Eu3+ was composed of two major parts: one was the broad band between 200 and 350 nm, which belonged to the charge transfer of Eu3+-O2-; the other consisted of a series of sharp lines between 350 and 450 nm, ascribed to the f-f transition of Eu3+. The emission spec-trum consisted of two emission peaks at 593 and 616 nm, which was attributed to 5D0→7F1 and 5D0→7F2 of Eu3+, respectively. The concen-tration of Eu3+ (x) had great effect on the emission intensity of Sr2-xMgSi2O7:Eu3+x. When x varied in the range of 0.04-0.18, the intensity of emission peaks at 593 and 616 nm increased gradually with the concentration of Eu3+ increasing. It was interesting that no concentration quenching occurred. Moreover, the luminescent intensity could be greatly enhanced with incorporation of charge compensator Li+ ions.  相似文献   

4.
CaAl2O4:Eu3+,R+(R=Li+,Na+,K+) red phosphors were synthesized by solid state reaction method.X-ray diffraction(XRD) and photoluminescence(PL) were employed to characterize their structural and luminescent properties.It was found that the optimal sintering temperature and sintering time were 1200 °C and 4 h,respectively.The optimal concentration of doped Eu3+ was 3 mol.%.Furthermore,under ultraviolet excitation with a wavelength of 254 nm,these samples showed red luminescence which were probably attributed to the transitions from 5D0 excited state to 7FJ(J=0-4) ground states of Eu3+ ions.The feature and the high intensity of hypersensitive transition from 5D0→7F2 indicated that Eu3+ preferred to occupy a low symmetry site.The incorporation of alkali metal ions greatly enhanced the luminescence intensity probably due to the influence of charge compensation of alkali metal ions.  相似文献   

5.
The efficient Eu2+ -doped Ba3 Si6O12N2 green phosphors were prepared by a traditional solid state reaction method under N2 /H2 atmosphere at a temperature up to 1350 oC for 12h. Photoluminescence (PL) properties showed a broad emission band with a peak of 525 nm and the full width of half-emission maximums (FWHM) of 70 nm under 460 nm light irradiation. The X-ray diffraction patterns (XRD) and scanning electron microscope (SEM) images of the synthesized powder demonstrated its pure phase and excellent crystallization. Quenching concentration in this phosphor was found to be 0.3. The mechanisms of concentration quenching and redshift of emission peak with increasing concentration of Eu2+ were studied. The temperature dependence measurement of this green phosphor revealed excellent thermal quenching property compared to silicate green phosphor. It is believed that Ba3 Si6O12N2 :Eu2+ is an excellent green phosphor for UV or blue chip based white LEDs.  相似文献   

6.
The novel phosphors of La 2 MoO 6 activated with the trivalent rare earth Ln 3+ (Ln=Eu, Sm, Dy, Pr, Tb) ions were synthesized by solid state reactions at high temperature in air atmosphere, and their phase impurities and luminescent properties were studied. The photoluminescence (PL) excitation and emission spectra, and decay curves were employed to study their luminescence properties. The lifetimes of the characteristic emissions from Ln 3+ ions were in the order of millisecond except Pr 3+ ions. (LaEu 1-x ) 2 MoO 6 was a promising phosphor for practical application and the optimum concentration was x=0.075. The concentration quenching mechanism of Eu 3+ was also discussed by theoretical fitting using Burshtein model.  相似文献   

7.
In order to obtain a single-host-white-light phosphor,a series of Ba1.8-w-x-y-zSrwLi0.4-xCexEuyMnzSiO4(BSLS:Ce3+,Eu2+,Mn2+)powder samples were synthesized via high temperature solid-state reaction.The structure and photoluminescence properties were investigated.Under ultraviolet excitation,the emission spectra contained three bands:the 370-470 nm blue band,the 470-570 nm green band and the 570-700 nm red band,which arose from the 5d→4f transitions of Ce3+ and Eu2+,and the 4T1→6A1 transition of Mn2+,respectively.The excitation spectra of the emissions of Ce3+ and Mn2+ ions showed the energy transfer from Ce3+ to Mn2+.White light emission was obtained from the tri-doped samples of appropriate doping concentration under 310-360 nm excitation.  相似文献   

8.
Ca3R2–xWO9:xEu3+(R=Y, Gd) red-emitting phosphors were prepared by solid state reactions. These samples were characterized by differential scanning calorimetry and thermogravimetry analysis(DSC-TGA), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), photoluminescence(PL) and field emission scanning electron microscopy(FE-SEM) analyses. The optimum sintering temperature for these phosphors was 1100 oC, and the optimum sintering time was 2 h. The optimum doped concentration of Eu3+3+ in Ca3Y2–xWO9:xEu and Ca3Gd2–xWO9:xEu3+ were x=1.5 and x=1.1, respectively. These phosphors could be excited by near-UV light of 394 nm and blue light of 465 nm, and showed strong red emission line at 612 nm(5D0→7F2), which indicated that Ca3R2–xWO9:xEu3+(R=Y, Gd) were promising red candidates for white LED.  相似文献   

9.
Eu2+-doped K2 Mg Si3O8 phosphors were synthesized by conventional solid-state reaction method. The phase formation of as-prepared samples was characterized by X-ray powder diffraction. The luminescence properties were investigated by the photoluminescence excitation and emission spectra, decay curve and CIE coordinates. The phosphor showed bluish-green emission centered at 460 nm under the excitation of UV and near UV light with the wavelength range of 250–430 nm. Two Eu2+ emission centers existed in the K2 Mg Si3O8:Eu2+ phosphor according to the luminescence spectra and the decay curves. The critical quenching concentration of Eu2+ doping was determined to be 3.0 mol.% and the concentration quenching mechanism was dipole-dipole interactions between Eu2+ ions. These results suggested that K2 Mg Si3O8:Eu2+ was a potential bluish-green phosphor candidate for white UV-LED.  相似文献   

10.
Li2Y4-xEux(WO4)7-y(MoO4)y red-emitting phosphors were synthesized by solid state reaction and characterized by powder X-ray diffraction (XRD) and photoluminescence (PL) spectrum. The excitation spectra showed that the phosphors could be efficiently excited by near-UV light of 395 nm. When the relative molar ratio of Mo/W was 7:0, and the optimum doped concentration of Eu3+was 2.8 mol, the phosphor showed strong red emission lines at 615 nm corresponding to the forced electric dipole 5D0→7F2 transition of Eu3+. Compared with Na2Y2Eu2(MoO4)7 and K2Y2Eu2(MoO4)7, the fluorescence intensity of Li2Y1.2Eu2.8(MoO4)7 phosphor was the strongest. The CIE chromaticity coordinates of Li2Y1.2Eu2.8(MoO4)7 phosphor was calculated to be (0.66, 0.34).  相似文献   

11.
Yttrium aluminum garnet structure phosphors Lu2CaMg2Si3O12:Mn2+ were synthesized by conventional high temperature solid-state reaction in reductive atmosphere. The structure and optical properties of samples were characterized by application of powder X-ray diffraction (XRD) and photoluminescence spectroscopy. Results of X-ray diffraction (XRD) analysis showed that the phosphors mainly presented garnet structure with a few weak peaks of impurity phases. Lu2-xCaMg2Si3O12:xMn2+ (x=0.01-0.8) phosphors showed a broad emission band peaking at around 590 nm under ultraviolet (UV) light of 408 nm when Mn2+ concentration was less than 0.08 mol. With an increase in the Mn2+ concentration (above 0.08), another broad emission band peaking at 720 nm besides 590 nm was observed, which may be due to manganese ion having different valence and occupying different host lattice. The critical quenching concentrations of manganese ion in the wavelength of 590 and 720 nm were about 0.06 and 0.2 mol, respectively. With 408 nm excitation wavelength, emission color of the samples had a red shift trend as the Mn2+ concentration increased. All the results indicated that the Lu2CaMg2Si3O12:Mn2+ phosphors could be applicable to n-UV based white LEDs.  相似文献   

12.
A blue phosphor Ca2PO4Cl:Eu2+(CAP:Eu2+) was synthesized by solid state reaction.The Ca2PO4Cl:Eu2+ exhibited high quantum efficiency and excellent thermal stability.The luminescent intensity of Ca2PO4Cl:Eu2+ was found to be 128% under excitation at 380 nm,149% under 400 nm,and 247% under 420 nm as high as that of BaMgAl10O17:Eu2+.The optimal doping concentration was observed to 11 mol.% of CAP:Eu2+.The energy transfer between Eu2+ ions in CAP were occurred via electric multipolar interaction,and the critical transfer distance was estimated to be 1.26 nm.A mixture of blue-emitting Ca2PO4Cl:Eu2+,green-emitting(Ba,Sr)2SiO4:Eu2+ and red-emitting CaAlSiN3:Eu2+ phosphors were selected in conjunction with 400 nm chip to fabricate white LED devices.The average color-rendering index Ra and correlated color temperature(Tc) of the white LEDs were found to be 93.4 and 4590 K,respectively.The results indicated that it was a promising candidate as a blue-emitting phosphor for the near-UV white light-emitting diodes.  相似文献   

13.
A novel red phosphor Eu3+ doped magnesium titanate (MgTiO3) was synthesized via sol-gel method. The X-ray diffraction patterns (XRD) revealed that a pure MgTiO3 phase was obtained. Its excitation spectrum consisted of a broad band (<350nm) and a series of narrow bands in the long wavelength, and the strongest excitation peak at 465nm might be exited by GaN-chip to emit red light for white LED. The phosphors showed strong emission at 614nm which could be attributed to the 5D0→7F2 emission of Eu3+ . The emission intensity of MgTiO3:Eu3+ phosphor reached the maximum at the Eu3+ concentration of 3.5mol.%. The luminescent properties (such as emission intensity and decay times) were further improved by introducing Al3+ as a charge compensator, demonstrating potential applications in white LED.  相似文献   

14.
Ce3+ and Tb3+ co-doped SrSi2N2O2 phosphors were prepared by solid-state reaction. The X-ray diffraction pattern exhibited that the phosphor consisted mainly of oxygen-rich SrSi2N2O2. The optical properties of SrSi2N2O2:Ce3+, SrSi2N2O2:Tb3+ and SrSi2N2O2:Ce3+,Tb3+ were studied, respectively. The emission intensity of Tb3+ at 541 nm was remarkably enhanced by Ce3+ in SrSi2N2O2:Ce3+,Tb3+ phosphor, which was attributed to the energy transfer from Ce3+ to Tb3+. The chromaticity coordinates of phosphors were investigated as a function of Tb3+ concentration. When the Ce3+ and Tb3+ concentrations were 0.02 and 0.18 mol per formula unit, respectively, the chromaticity coordinate was (0.257, 0.337) in the CIE 1931 chromaticity diagram. SrSi2N2O2Ce3+,Tb3+ phosphors could be used for white light emitting diodes.  相似文献   

15.
Preparation and Luminescent Properties of BAM Blue Phosphor forPDP and CCFL   总被引:3,自引:0,他引:3  
The Bax-0.05MgAl10O16 x :Eu0.05^2 (0.88≤ x≤ 1.02) phosphors with different Ba^2 content and the Ba0.85MgAl10O16.94:Eu0.05^2 phosphors with different fluxes (BaF2, MgF2, AlF3, BaCl2, MgCl2, AlCl3, H3BO3)were prepared by high temperature solid-state reaction method and their luminescence characteristics were studied under 254 nm excitation and vacuum ultraviolet (VUV) excitation. With the increase of the Ba^2 content, there is an increase in the emission intensity, and when x = 0.94, it reaches a maximum. Then, as the Ba^2 content increases, the emission intensity slowly falls. The fluorides have better flux-effects than chlorides and H3BO3. The possible mechanism in the process of particle growth was discussed when fluorides were used as fluxes. The effect of the activator concentration on this system was also investigated. The quenching concentration is 0.13 mol in per mole host.  相似文献   

16.
A series of red phosphors Eu3+-doped MMgP2O7(M=Ca,Sr,Ba) were synthesized by solid-state reaction method.X-ray powder diffraction(XRD) analysis confirmed the formation of pure CaMgP2O7,SrMgP2O7 and BaMgP2O7 phase.Photoluminescence spectra of MMgP2O7(M=Ca,Sr,Ba):Eu3+ phosphors showed a strong excitation peak at around 400 nm,which was coupled with the characteristic emission(350-400 nm) from UV light-emitting diode.The CaMgP2O7:Eu3+,SrMgP2O7:Eu3+ and BaMgP2O7:Eu3+ phosphors showed strong emission bands peaking at 612,593 and 587 nm,respectively.Due to the difference of the ion sizes between Ba2+(0.142 nm),Sr2+(0.126 nm),Ca2+(0.112 nm),Mg2+(0.072 nm) and Eu3+(0.107 nm),Eu3+ ions were expected to substitute for different sites in CaMgP2O7,SrMgP2O7 and BaMgP2O7 lattice.  相似文献   

17.
Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors with different concentrations were prepared via a co-precipitation method. The structure and morphology of the nanocrystal samples were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The emission spectra and excitation spectra of samples were measured. J-O parameters and quantum efficiencies of Eu3+ 5D0 energy level were calculated, and the concentration quenching of Eu3+ luminescence in different matrixes were studied. The results indicated that effective Eu3+:5D0-7F2 red luminescence could be achieved while excited by 395 nm near-UV light and 465 nm blue light in Gd2WO6 host, which was similar to the familiar Gd2(WO4)3:Eu. Therefore, the Gd2WO6:Eu red phosphors might have a potential application for white LED.  相似文献   

18.
The luminescent properties of Eu3 doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation band below 325 nm and strong narrow peaks above 325 nm. The main peak of the excitation band was located at 400 nm. The peaks located at 290 nm were assigned to the combination of the charge transfer transition of O-Eu, peaks above 325 nm (325, 385, 400, 470, 511, and 539 nm) were assigned to the f–f transitions of Eu3 . The emission spectrum was dominated by the red peak located at 612 nm due to the electric dipole transition of 5D0–7F2. In addition, the ef- fects of the Eu3 content and charge compensators of Li , Na , K , and Cl– ions on the emission intensity were investigated. The experiment results suggested that the strongest emission was obtained when the concentration of the Eu3 ions was 0.3 mol–1, and Li ions gave the best improvement to enhance the emission intensity. Ca2SiO4:Eu3 , Li was thus suitable for low-cost trichromatic white light emitting diodes (WLED) based on UV InGaN chip.  相似文献   

19.
Eu2+ and Dy3+ codoped(Ca,Sr)7(SiO3)6Cl2 yellow phosphors were successfully synthesized by self-flux method. The structure, morphology and photoluminescence properties were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and photoluminescence spectra. The as-prepared phosphor showed a broad emission spectrum centered at 550 nm for Eu2+single-doped phosphor, while located at 548–544 nm for the Eu2+, Dy3+ codoped samples under excitation at 380 nm light. The emission intensity was greatly improved when Dy3+ was doped into the(Ca,Sr)7(SiO3)6Cl2:Eu2+ system. The composition-optimized sample with 3 mol.% of Dy3+ and constant 10 mol.% of Eu2+ exhibited a 220% PL enhancement compared to the phosphor with 10 mol.% Eu2+ single-doped. Meanwhile, it was found that the quantum efficiency of phosphor namely(Ca,Sr)7(SiO3)6Cl2:3 mol.% Dy3+, 10 mol.% Eu2+ could get up to 24.6%. The synthesized yellow-emitting(Ca,Sr)7(SiO3)6Cl2:Dy3+,Eu2+ is a promising candidate as high-efficiency yellow phosphor for NUV-excited white LEDs.  相似文献   

20.
Nanosized Gd2(1-x)Eu2xTi2O7:yV5+ phosphors were prepared via sol-gel method and characterized with X-ray diffraction,Raman spectroscopy,diffuse reflectance spectra and photoluminescence spectra.Their PL properties were investigated as functions of the Eu3+ doping concentration and annealing temperature.The results indicated that the as-prepared samples showed a strong emission of Eu3+ under the irradiation of 303 nm.For Eu3+-doped Gd2Ti2O7,the orange emission at 586 nm was the strongest,which was correspond...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号