首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We analyze the exponential decay property of solutions of the semilinear wave equation in bounded domain Ω of R^N with a damping term which is effective on the exterior of a ball and boundary conditions of the Cauchy-Ventcel type. Under suitable and natural assumptions on the nonlinearity, we prove that the exponential decay holds locally uniformly for finite energy solutions provided the nonlinearity is subcritical at infinity. Subcriticality means, roughly speaking, that the nonlinearity grows at infinity at most as a power p 〈 5. The results obtained in R^3 and RN by B. Dehman, G. Lebeau and E. Zuazua on the inequalities of the classical energy (which estimate the total energy of solutions in terms of the energy localized in the exterior of a ball) and on Strichartz's estimates, allow us to give an application to the stabilization controllability of the semilinear wave equation in a bounded domain of R^N with a subcritical nonlinearity on the domain and its boundary, and conditions on the boundary of Cauchy-Ventcel type.  相似文献   

2.
简要叙述了阿基米德的经历和贡献,并且指明他量 位和现代科学相通的伟人。  相似文献   

3.
This work is concerned with applying the fractional calculus approach to the magnetohydrodynamic (MHD) pipe flow of a fractional generalized Burgers’ fluid in a porous space by using modified Darcy’s relationship. The fluid is electrically conducting in the presence of a constant applied magnetic field in the transverse direction. Exact solution for the velocity distribution is developed with the help of Fourier transform for fractional calculus. The solutions for a Navier–Stokes, second grade, Maxwell, Oldroyd-B and Burgers’ fluids appear as the limiting cases of the present analysis.  相似文献   

4.
The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions. The project supported by the National Natural Science Foundation of China (10272067), the Doctoral Program Foundation of the Education Ministry of China (20030422046), the Natural Science Foundation of Shandong Province, China (Y2006A14) and the Research Foundation of Shandong University at Weihai. The English text was polished by Keren Wang.  相似文献   

5.
唐少强 《力学与实践》2018,40(4):428-431
简单讨论了力学专业学习中微积分课程的内容、意义、作用和学习方法,是计划在北京大学出版社出版的《微积分导引》的序言。  相似文献   

6.
分析了一类分数阶对称金融非线性系统的复杂度特性,利用有限时间同步理论设计控制器,实现了有限时间同步。根据分数阶系统定义和Adomain分解法对该系统的非线性项进行Adomain分解,结合分解系数定义系统的表达式,将其离散化。基于谱熵复杂度及C0复杂度的基本算法,利用Matlab仿真其复杂度曲线及复杂度图谱。为进一步探究对称金融非线性系统的动力学特性,利用有限时间同步理论设计误差控制器,实现有限时间同步,仿真结果表明该控制器可使系统在极短的时间内实现同步且鲁棒性好。  相似文献   

7.
The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases are solved and the exact solutions are obtained by using the Weber transform and the Laplace transform for fractional calculus.The project supported by the National Natural Science Foundation of China (10272067, 10426024), the Doctoral Program Foundation of the Education Ministry of China (20030422046) and the Natural Science Foundation of Shandong University at Weihai. The English text was polished by Keren Wang.  相似文献   

8.
9.
短脉冲激光加热引起材料内部复杂的传热过程及热变形,现有的以Fourier定律或Cattaneo-Vernotte松弛方程结合弹性理论为框架建立起来热应力理论在刻画其热物理过程存在严重缺陷. 本文基于分数阶微积分理论, 以半空间为研究对象, 建立了分数阶Cattaneo热传导方程和相应的热应力方程, 给出了问题的初始条件和边界条件, 采用拉普拉斯变换方法, 给出了非高斯时间分布激光热源辐射下温度场和热应力场的解析解, 研究了短脉冲激光加热的温度场及热应力场的热物理行为. 数值计算中, 首先对理论解进行数值验证, 然后取分数阶变量$p=0.5$研究温度场和热应力场的变化特点及激光参数对温度和热应力的影响,最后数值计算分数阶参数对温度和热应力场的影响. 计算结果表明, 分数阶Cattaneo传热方程和热应力方程描述的温度和热应力任然具有波动特性,与经典的Fourier传热模型和标准的Cattaneo传热模型相比, 分数阶阶次越大, 热波波速越小, 热波波动性越明显; 反之, 则热波波速越大, 热扩散性越强.激光加热和冷却的速度越快, 温度上升和下降的速度越快, 压应力和拉应力交替变化越快, 温度变化幅值越小, 热应力幅值影响不明显.   相似文献   

10.
分数阶微分型双参数黏弹性地基矩形板受荷响应   总被引:5,自引:0,他引:5  
寇磊 《力学季刊》2013,34(1):154-160
基于考虑水平剪切变形和竖向压缩变形的双参数地基模型,利用分数阶微分建立了黏弹性地基上矩形薄板荷载作用下的挠度方程;根据弹性-黏弹性对应原理,通过Laplace变换将四边简支矩形板弹性问题的解推广求解分数阶微分黏弹性问题;通过算例表明分数阶微分型黏弹性模型比经典黏弹性模型的适应性,并分析了模型参数对挠度-时间关系的影响.  相似文献   

11.
经典的导数建模方法刻画了特定物理量对时间或空间的变化率,较少直接考虑复杂系统介观时间-空间结构对其物理力学行为的重要影响。本文通过引入结构函数,提出了一种局部结构导数建模方法,以克服传统方法的不足。结构函数刻画了系统的时间-空间特征,实际上是一个时空变换,基于其上的结构导数能够描述复杂问题介观时空结构与特定物理量的因果关系,减少模型参数,降低计算成本。我们可通过问题的广义基本解或已知统计分布的概率密度函数,推导出其系统的结构函数。两类应用实例表明,基于对数结构函数的结构导数方法可以描述软物质中的特慢扩散现象,也可用来建立以Weibull分布的概率密度函数为结构函数的可靠性结构导数扩散方程。  相似文献   

12.
分数阶微积分在滑模控制中的应用特性   总被引:1,自引:0,他引:1  
针对分数阶微积分算子的信息记忆与遗传特性,从分数阶滑模趋近律与分数阶滑模控制律两方面,对分数阶微积分算子在滑模控制理论中的应用特性进行了研究。首先,从传统滑模控制理论的几种趋近律入手,引出分数阶滑模趋近律并分析其收敛特性。其次,针对航天器姿态控制系统,设计了一种分数阶滑模控制器。最后,对比数值仿真验证了所设计控制器的良好性能,与传统滑模趋近律和传统滑模控制律相比,分数阶滑模趋近律具有较好的平滑特性,分数阶滑模控制律具有更好的抗干扰性与强鲁棒性。  相似文献   

13.
In this paper, the generalized Oldroyd-B with fractional calculus approach is used. An exact solution in terms of Fox-H function for flow past an accelerated horizontal plate in a rotating fluid is obtained by using discrete Laplace transform method. A comparison among the influence of various parameters in the Oldroyd-B model and the angular velocity of the fluid on the velocity profiles is made through numerical method in graphic form.  相似文献   

14.
It is known that there exist obivious differences between the two most commonly used definitions of fractional derivatives—Riemann–Liouville (R–L) definition and Caputo definition. The multiple definitions of fractional derivatives in fractional calculus have hindered the application of fractional calculus in rheology. In this paper, we clarify that the R–L definition and Caputo definition are both rheologically imperfect with the help of mechanical analogues of the fractional element model (Scott–Blair model). We also clarify that to make them perfect rheologically, the lower terminals of both definitions should be put to ∞. We further prove that the R–L definition with lower terminal a →∞ and the Caputo definition with lower terminal a →∞ are equivalent in the differentiation of functions that are smooth enough and functions that have finite number of singular points. Thus we can define the fractional derivatives in rheology as the R–L derivatives with lower terminal a →∞ (or, equivalently, the Caputo derivatives with lower terminal a →∞) not only for steady-state processes, but also for transient processes. Based on the above definition, the problems of composition rules of fractional operators and the initial conditions for fractional differential equations are discussed, respectively. As an example we study a fractional oscillator with Scott–Blair model and give an exact solution of this equation under given initial conditions.  相似文献   

15.
非牛顿流体力学研究的若干进展   总被引:3,自引:0,他引:3  
简要介绍微极性流体,应力偶流体,非整数阶Maxwell流体和智能流体的基本概念,通过简单的例子阐述它们与牛顿流体的本质差别,并介绍非牛顿流体在以上热点研究领域的若干进展.  相似文献   

16.
The exact solutions are obtained for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. The fractional calculus in the constitutive relationship of a non-Newtonian fluid is introduced. We construct the solutions by means of Fourier transform and the discrete Laplace transform of the sequential derivatives and the double finite Fourier transform. The solutions for Newtonian fluid between two infinite parallel plates appear as limiting cases of our solutions.  相似文献   

17.
作为我国理性力学先驱之一的郭仲衡先生在其所著《张量(理论和应用)》以及《非线性弹性理论》中记述了现代张量分析以及有限变形理论知识体系.本文按有限维Euclid空间上微积分以及一般赋范线性空间上微分学认识相关知识体系的理论框架,相关思想及方法,阐述了有关思想及方法的发展及其应用.本文未涉及现代几何学在连续介质力学中的应用.  相似文献   

18.
19.
Computational fluid dynamics(CFD)has become a valuable tool to study the complex gas-solid hydrodynamics in the circulating fluidized bed(CFB).Based on the two fluid model(TFM)under the Eulerian-Eulerian framework and the dense discrete phase model(DDPM)under the Eulerian-Lagrangian framework,this work conducts the comparative study of the gas-solid hydrodynamics in a CFB riser by these two different models.Results show that DDPM could be used to predict gas-solid hydrodynamics in the circulating fluidized bed,and there are differences between TFM and DDPM,especially in the radial distribution profiles of solid phase.Sensitivity analysis results show that the gas-solid drag model exhibits significant effects on the results for both the two models.The specularity coefficient and the restitution coefficient in the TFM,as well as the reflection coefficient and the parcel number in the DDPM,exhibit less impact on the simulated results.  相似文献   

20.
A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model.The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle,and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel.Several nominal variables are introduced to simplify the differential governing equation,integral constitutive equation,and boundary conditions.Rather than transforming the constitutive equation from integral to differential forms,the Laplace transformation is used directly to solve the integro-differential equations.The explicit expression for nominal torsional rotation and torque contains four unknown constants,which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation.A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped(CC)FGNT under torsional constraints and a clamped-free(CF)FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号