首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
拟哈密顿系统非线性随机最优控制   总被引:2,自引:0,他引:2  
主要介绍近十几年来拟哈密顿系统非线性随机最优控制理论方法及其应用的研究成果, 包括基于拟哈密顿系统随机平均法与随机动态规划原理的非线性随机最优控制基本策略, 即响应极小化控制、随机稳定化、首次穿越损坏最小化控制、以概率密度为目标的控制, 为将它们应用于工程实际而作的部分可观测系统最优控制、有界控制、时滞控制、半主动控制、极小极大控制的进一步研究, 以及综合考虑这些实际问题的非线性随机最优控制的综合策略, 非线性随机最优控制在滞迟系统、分数维系统等中的若干应用, 介绍与这些研究有关的背景, 并指出今后有待进一步研究的问题.  相似文献   

2.
An optimal vibration control strategy for partially observable nonlinear quasi Hamiltonian systems with actuator saturation is proposed. First,a controlled partially observable non-linear system is converted into a completely observable linear control system of finite dimension based on the theorem due to Charalambous and Elliott. Then the partially averaged It stochastic differential equations and dynamical programming equation associated with the completely observable linear system are derived by using the stochastic averaging method and stochastic dynamical programming principle,respectively. The optimal control law is obtained from solving the final dynamical programming equation. The results show that the proposed control strategy has high control effectiveness and control effciency.  相似文献   

3.
A feedback control optimization method of partially observable linear structures via stationary response is proposed and analyzed with linear building structures equipped with control devices and sensors. First, the partially observable control problem of the structure under horizontal ground acceleration excitation is converted into a completely observable control problem. Then the It6 stochastic differential equations of the system are derived based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution to the Fokker-Plank-Kolmogorov (FPK) equation associated with the It6 equations is obtained. The performance index in terms of the mean system energy and mean square control force is established and the optimal control force is obtained by minimizing the performance index. Finally, the numerical results for a three-story building structure model under E1 Centro, Hachinohe, Northridge and Kobe earthquake excitations are given to illustrate the application and the effectiveness of the proposed method.  相似文献   

4.
A stochastic minimax semi-active control strategy for multi-degrees-of-freedom (MDOF) strongly nonlinear systems under combined harmonic and wide-band noise excitations is proposed. First, a stochastic averaging procedure is introduced for controlled uncertain strongly nonlinear systems using generalized harmonic functions and the control forces produced by Magneto-rheological (MR) dampers are split into the passive part and the active part. Then, a worst-case optimal control strategy is derived by solving a stochastic differential game problem. The worst-case disturbances and the optimal semi-active controls are obtained by solving the Hamilton–Jacobi–Isaacs (HJI) equations with the constraints of disturbance bounds and MR damper dynamics. Finally, the responses of optimally controlled MDOF nonlinear systems are predicted by solving the Fokker–Planck–Kolmogorov (FPK) equation associated with the fully averaged Itô equations. Two examples are worked out in detail to illustrate the proposed control strategy. The effectiveness of the proposed control strategy is verified by using the results from Monte Carlo simulation.  相似文献   

5.
Zhu  W. Q.  Ying  Z. G.  Soong  T. T. 《Nonlinear dynamics》2001,24(1):31-51
A strategy for optimal nonlinear feedback control of randomlyexcited structural systems is proposed based on the stochastic averagingmethod for quasi-Hamiltonian systems and the stochastic dynamicprogramming principle. A randomly excited structural system isformulated as a quasi-Hamiltonian system and the control forces aredivided into conservative and dissipative parts. The conservative partsare designed to change the integrability and resonance of the associatedHamiltonian system and the energy distribution among the controlledsystem. After the conservative parts are determined, the system responseis reduced to a controlled diffusion process by using the stochasticaveraging method. The dissipative parts of control forces are thenobtained from solving the stochastic dynamic programming equation. Boththe responses of uncontrolled and controlled structural systems can bepredicted analytically. Numerical results for a controlled andstochastically excited Duffing oscillator and a two-degree-of-freedomsystem with linear springs and linear and nonlinear dampings, show thatthe proposed control strategy is very effective and efficient.  相似文献   

6.
A new procedure for designing optimal bounded control of quasi-nonintegrable Hamiltonian systems with actuator saturation is proposed based on the stochastic averaging method for quasi-nonintegrable Hamiltonian systems and the stochastic maximum principle. First, the stochastic averaging method for controlled quasi-nonintegrable Hamiltonian systems is introduced. The original control problem is converted into one for a partially averaged equation of system energy together with a partially averaged performance index. Then, the adjoint equation and the maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The bounded optimal control forces are obtained from the maximum condition and solving the forward–backward stochastic differential equations (FBSDE). For infinite time-interval ergodic control, the adjoint variable is stationary process, and the FBSDE is reduced to an ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation associated with the fully averaged Itô equation of the controlled system. For comparison, the bang–bang control is also presented. An example of two degree-of-freedom quasi-nonintegrable Hamiltonian system is worked out to illustrate the proposed procedure and its effectiveness. Numerical results show that the proposed control strategy has higher control efficiency and less discontinuous control force than the corresponding bang–bang control at the price of slightly less control effectiveness.  相似文献   

7.
A new procedure for designing optimal control of quasi non-integrable Hamiltonian systems under stochastic excitations is proposed based on the stochastic averaging method for quasi non-integrable Hamiltonian systems and the stochastic maximum principle. First, the control problem consisting of 2n-dimensional equations governing the controlled quasi non-integrable system and performance index is converted into a partially averaged one consisting of one-dimensional equation of the controlled system and performance index by using the stochastic averaging method. Then, the adjoint equation and the maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The optimal control forces are determined from the maximum condition and solving the forward?Cbackward stochastic differential equations (FBSDE). For infinite time-interval ergodic control, the adjoint variable is a stationary process and the FBSDE is reduced to a partial differential equation. Finally, the response statistics of optimally controlled system is predicted by solving the Fokker?CPlank equation (FPE) associated with the fully averaged It? equation of the controlled system. An example of two degree-of-freedom (DOF) quasi non-integrable Hamiltonian system is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

8.
A new procedure for designing optimal bounded control of stochastically excited multi-degree-of-freedom (MDOF) nonlinear viscoelastic systems is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the system is formulated as a quasi-integrable Hamiltonian system with viscoelastic terms and each viscoelastic term is replaced approximately by an elastically restoring force and a visco-damping force based on the randomly periodic behavior of the motion of quasi-integrable Hamiltonian system. Thus, a stochastically excited MDOF nonlinear viscoelastic system is converted to an equivalent quasi-integrable Hamiltonian system without viscoelastic terms. Then, by applying stochastic averaging, the system is further reduced to a partially averaged system of less dimension. The adjoint equation and maximum condition for the optimal control problem of the partially averaged system are derived by using the stochastic maximum principle, and the optimal bounded control force is determined from the maximum condition. Finally, the probability and statistics of the stationary response of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation (FPK) associated with the fully averaged Itô equation of the controlled system. An example is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

9.
柔性作动器具有低刚度、大变形等特征,这一方面使主结构具备了强的环境适应性,另一方面也使主结构易受外界微扰影响,从而降低其操作精度.本文以介电弹性体作动器驱动的单自由度非线性系统为研究对象,通过即时微调电压,抑制系统在平衡位置附近的随机振动.通过随机平均法降低系统维数,将原系统的控制问题转化为关于慢变过程的控制问题;结合随机动态规划原理及控制约束导出最优有界控制策略.该策略具干摩擦形式,具有能量耗散本质,在抑制系统振动的同时提高了系统的稳定性.数值研究表明:最优有界控制策略具有良好的控制效果、控制效率及较高的鲁棒性.  相似文献   

10.
In this paper two different control strategies designed to alleviate the response of quasi partially integrable Hamiltonian systems subjected to stochastic excitation are proposed. First, by using the stochastic averaging method for quasi partially integrable Hamiltonian systems, an n-DOF controlled quasi partially integrable Hamiltonian system with stochastic excitation is converted into a set of partially averaged Itô stochastic differential equations. Then, the dynamical programming equation associated with the partially averaged Itô equations is formulated by applying the stochastic dynamical programming principle. In the first control strategy, the optimal control law is derived from the dynamical programming equation and the control constraints without solving the dynamical programming equation. In the second control strategy, the optimal control law is obtained by solving the dynamical programming equation. Finally, both the responses of controlled and uncontrolled systems are predicted through solving the Fokker-Plank-Kolmogorov equation associated with fully averaged Itô equations. An example is worked out to illustrate the application and effectiveness of the two proposed control strategies.  相似文献   

11.
A time-delayed stochastic optimal bounded control strategy for strongly non-linear systems under wide-band random excitations with actuator saturation is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the partially averaged Itô equation for the system amplitude is derived by using the stochastic averaging method for strongly non-linear systems. The time-delayed feedback control force is approximated by a control force without time delay based on the periodically random behavior of the displacement and velocity of the system. The partially averaged Itô equation for the system energy is derived from that for the system amplitude by using Itô formula and the relation between system amplitude and system energy. Then, the adjoint equation and maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The saturated optimal control force is determined from maximum condition and solving the forward–backward stochastic differential equations (FBSDEs). For infinite time-interval ergodic control, the adjoint variable is stationary process and the FBSDE is reduced to a ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained from solving the Fokker–Plank–Kolmogorov (FPK) equation associated with the fully averaged Itô equation of the controlled system. For comparison, the optimal control forces obtained from the time-delayed bang–bang control and the control without considering time delay are also presented. An example is worked out to illustrate the proposed procedure and its advantages.  相似文献   

12.
A stochastic fractional optimal control strategy for quasi-integrable Hamiltonian systems with fractional derivative damping is proposed. First, equations of the controlled system are reduced to a set of partially averaged It $\hat{o}$ stochastic differential equations for the energy processes by applying the stochastic averaging method for quasi-integrable Hamiltonian systems and a stochastic fractional optimal control problem (FOCP) of the partially averaged system for quasi-integrable Hamiltonian system with fractional derivative damping is formulated. Then the dynamical programming equation for the ergodic control of the partially averaged system is established by using the stochastic dynamical programming principle and solved to yield the fractional optimal control law. Finally, an example is given to illustrate the application and effectiveness of the proposed control design procedure.  相似文献   

13.
A NEW STOCHASTIC OPTIMAL CONTROL STRATEGY FOR HYSTERETIC MR DAMPERS   总被引:3,自引:0,他引:3  
I. INTRODUCTION Magneto-rheological (MR) ?uid as a smart material possesses fairly good essential characteristics suchas reversible change between liquid and semi-solid in milliseconds with a controllable yield strengthwhen exposed to a magnetic ?eld. A…  相似文献   

14.
An optimal bounded control strategy for smart structure systems as controlled Hamiltonian systems with random excitations and noised observations is proposed. The basic dynamic equations for a smart structure system with smart sensors and actuators are firstly given. The nonlinear stochastic control system with noised observations is then obtained from the simplified smart structure system, and the system is expressed by generalized Hamiltonian equations with control, random excitation and dissipative forces. The optimal control problem for nonlinear stochastic systems with noised observations includes two parts: optimal state estimation and optimal response control based on estimated states, which are coupled each other. The probability density of optimally estimated systems has generally infinite dimensions based on the separation theorem. The proposed optimal control strategy gives an approximate separate solution. First, the optimally estimated system state is determined by the observations based on the extended Kalman filter, and the estimated nonlinear system with controls and stochastic excitations is obtained which has finite-dimensional probability density. Second, the dynamical programming equation for the estimated system is determined based on the stochastic dynamical programming principle. The control boundedness due to actuator saturation is considered, and the optimal bounded control law is obtained by the programming equation with the bounded control constraint. The optimal control depends on the estimated system state which is determined by noised observations. The proposed optimal bounded control strategy is finally applied to a single-degree-of-freedom nonlinear stochastic system with control and noised observation. The remarkable vibration control effectiveness is illustrated with numerical results. Thus the proposed optimal bounded control strategy is promising for application to nonlinear stochastic smart structure systems with noised observations.  相似文献   

15.
朱位秋  黄志龙 《力学进展》2000,30(4):481-494
近几年中,利用Hamilton系统的可积性与共振性概念及Poisson括号性质等,提出了高斯白噪声激励下多自由度非线性随机系统的精确平稳解的泛函构造与求解方法,并在此基础上提出了等效非线性系统法,提出了拟Hamilton系统的随机平均法,并在该法基础上研究了拟Hamilton系统随机稳定性、随机分岔、可靠性及最优非线性随机控制,从而基本上形成了一个非线性随机动力学与控制的Hamilton理论框架.本文简要介绍了这方面的进展.  相似文献   

16.
A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled strongly non-linear systems under wide-band random excitation using generalized harmonic functions. Then, the dynamical programming equation for the saturated control problem is formulated from the partially averaged Itō equation based on the dynamical programming principle. The optimal control consisting of the unbounded optimal control and the bounded bang-bang control is determined by solving the dynamical programming equation. Finally, the response of the optimally controlled system is predicted by solving the reduced Fokker-Planck-Kolmogorov (FPK) equation associated with the completed averaged Itō equation. An example is given to illustrate the proposed control strategy. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and the chattering is reduced significantly comparing with the bang-bang control strategy.  相似文献   

17.
A procedure for designing optimal bounded control to minimize the response of quasi-integrable Hamiltonian systems is proposed based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stochastic dynamical programming principle. The equations of motion of a controlled quasi-integrable Hamiltonian system are first reduced to a set of partially completed averaged Itô stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, the dynamical programming equation for the control problems of minimizing the response of the averaged system is formulated based on the dynamical programming principle. The optimal control law is derived from the dynamical programming equation and control constraints without solving the dynamical programming equation. The response of optimally controlled systems is predicted through solving the Fokker-Planck-Kolmogrov equation associated with fully completed averaged Itô equations. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

18.
A stochastic optimal control strategy for a slightly sagged cable using support motion in the cable axial direction is proposed.The nonlinear equation of cable motion in plane is derived and reduced to the equations for the first two modes of cable vibration by using the Galerkin method.The partially averaged Ito equation for controlled system energy is further derived by applying the stochastic averaging method for quasi-non-integrable Hamiltonian systems.The dynamical programming equation for the controlled system energy with a performance index is established by applying the stochastic dynamical programming principle and a stochastic optimal control law is obtained through solving the dynamical programming equation.A bilinear controller by using the direct method of Lyapunov is introduced.The comparison between the two controllers shows that the proposed stochastic optimal control strategy is superior to the bilinear control strategy in terms of higher control effectiveness and efficiency.  相似文献   

19.
本文针对受到非平稳地震激励作用下的连体结构提出一种基于时域显式法的瞬时最优控制算法。该算法可以利用有限元模型施加脉冲荷载快速建立受控模型,可以避免系统状态部分可观测的问题,而且可以根据需要单独调控子结构受控效果的优点。一连体高层建筑结构算例用来说明该算法,并将该算法与传统瞬时最优控制算法比较,结果表明本文算法具有良好的控制效果。  相似文献   

20.
A new bounded optimal control strategy for multi-degree-of-freedom (MDOF) quasi nonintegrable-Hamiltonian systems with actuator saturation is proposed. First, an n-degree-of-freedom (n-DOF) controlled quasi nonintegrable-Hamiltonian system is reduced to a partially averaged Itô stochastic differential equation by using the stochastic averaging method for quasi nonintegrable-Hamiltonian systems. Then, a dynamical programming equation is established by using the stochastic dynamical programming principle, from which the optimal control law consisting of optimal unbounded control and bang–bang control is derived. Finally, the response of the optimally controlled system is predicted by solving the Fokker–Planck–Kolmogorov (FPK) equation associated with the fully averaged Itô equation. An example of two controlled nonlinearly coupled Duffing oscillators is worked out in detail. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and that chattering is reduced significantly compared with the bang–bang control strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号