首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A procedure for designing optimal bounded control to minimize the response of quasi-integrable Hamiltonian systems is proposed based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stochastic dynamical programming principle. The equations of motion of a controlled quasi-integrable Hamiltonian system are first reduced to a set of partially completed averaged Itô stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, the dynamical programming equation for the control problems of minimizing the response of the averaged system is formulated based on the dynamical programming principle. The optimal control law is derived from the dynamical programming equation and control constraints without solving the dynamical programming equation. The response of optimally controlled systems is predicted through solving the Fokker-Planck-Kolmogrov equation associated with fully completed averaged Itô equations. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

2.
A stochastic averaging method for predicting the response of quasi-integrable and non-resonant Hamiltonian systems to combined Gaussian and Poisson white noise excitations is proposed. First, the motion equations of a quasi-integrable and non-resonant Hamiltonian system subject to combined Gaussian and Poisson white noise excitations is transformed into stochastic integro-differential equations (SIDEs). Then $n$ -dimensional averaged SIDEs and generalized Fokker–Plank–Kolmogrov (GFPK) equations for the transition probability densities of $n$ action variables and $n$ - independent integrals of motion are derived by using stochastic jump–diffusion chain rule and stochastic averaging principle. The probability density of the stationary response is obtained by solving the averaged GFPK equation using the perturbation method. Finally, as an example, two coupled non-linear damping oscillators under both external and parametric excitations of combined Gaussian and Poisson white noises are worked out in detail to illustrate the application and validity of the proposed stochastic averaging method.  相似文献   

3.
In this paper two different control strategies designed to alleviate the response of quasi partially integrable Hamiltonian systems subjected to stochastic excitation are proposed. First, by using the stochastic averaging method for quasi partially integrable Hamiltonian systems, an n-DOF controlled quasi partially integrable Hamiltonian system with stochastic excitation is converted into a set of partially averaged Itô stochastic differential equations. Then, the dynamical programming equation associated with the partially averaged Itô equations is formulated by applying the stochastic dynamical programming principle. In the first control strategy, the optimal control law is derived from the dynamical programming equation and the control constraints without solving the dynamical programming equation. In the second control strategy, the optimal control law is obtained by solving the dynamical programming equation. Finally, both the responses of controlled and uncontrolled systems are predicted through solving the Fokker-Plank-Kolmogorov equation associated with fully averaged Itô equations. An example is worked out to illustrate the application and effectiveness of the two proposed control strategies.  相似文献   

4.
A bistable dynamical system with the Duffing potential, fractional damping, and random excitation has been modelled. To excite the system, we used a stochastic force defined by Wiener random process of Gaussian distribution. As expected, stochastic resonance appeared for sufficiently high noise intensity. We estimated the critical value of the noise level as a function of derivative order \(q\) . For smaller order \(q\) , damping enhancement was reported.  相似文献   

5.
Zhu  W. Q.  Deng  M. L.  Huang  Z. L. 《Nonlinear dynamics》2003,33(2):189-207
The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged Itô equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.  相似文献   

6.
The response of quasi-integrable Hamiltonian systems with delayed feedback bang–bang control subject to Gaussian white noise excitation is studied by using the stochastic averaging method. First, a quasi-Hamiltonian system with delayed feedback bang–bang control subjected to Gaussian white noise excitation is formulated and transformed into the Itô stochastic differential equations for quasi-integrable Hamiltonian system with feedback bang–bang control without time delay. Then the averaged Itô stochastic differential equations for the later system are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution of the averaged Fokker–Plank–Kolmogorov (FPK) equation associated with the averaged Itô equations is obtained for both nonresonant and resonant cases. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed method and the effect of time delayed feedback bang–bang control on the response of the systems.  相似文献   

7.
A NEW STOCHASTIC OPTIMAL CONTROL STRATEGY FOR HYSTERETIC MR DAMPERS   总被引:3,自引:0,他引:3  
I. INTRODUCTION Magneto-rheological (MR) ?uid as a smart material possesses fairly good essential characteristics suchas reversible change between liquid and semi-solid in milliseconds with a controllable yield strengthwhen exposed to a magnetic ?eld. A…  相似文献   

8.
A nonlinear stochastic optimal control strategy for minimizing the first-passage failure of quasi integrable Hamiltonian systems (multi-degree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is proposed. The equations of motion for a controlled quasi integrable Hamiltonian system are reduced to a set of averaged Itô stochastic differential equations by using the stochastic averaging method. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and mean first-passage time are formulated. The optimal control law is derived from the dynamical programming equations and the control constraints. The final dynamical programming equations for these control problems are determined and their relationships to the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the mean first-passage time are separately established. The conditional reliability function and the mean first-passage time of the controlled system are obtained by solving the final dynamical programming equations or their equivalent Kolmogorov and Pontryagin equations. An example is presented to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

9.
A new procedure for designing optimal bounded control of stochastically excited multi-degree-of-freedom (MDOF) nonlinear viscoelastic systems is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the system is formulated as a quasi-integrable Hamiltonian system with viscoelastic terms and each viscoelastic term is replaced approximately by an elastically restoring force and a visco-damping force based on the randomly periodic behavior of the motion of quasi-integrable Hamiltonian system. Thus, a stochastically excited MDOF nonlinear viscoelastic system is converted to an equivalent quasi-integrable Hamiltonian system without viscoelastic terms. Then, by applying stochastic averaging, the system is further reduced to a partially averaged system of less dimension. The adjoint equation and maximum condition for the optimal control problem of the partially averaged system are derived by using the stochastic maximum principle, and the optimal bounded control force is determined from the maximum condition. Finally, the probability and statistics of the stationary response of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation (FPK) associated with the fully averaged Itô equation of the controlled system. An example is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

10.
A stochastic optimal control strategy for a slightly sagged cable using support motion in the cable axial direction is proposed.The nonlinear equation of cable motion in plane is derived and reduced to the equations for the first two modes of cable vibration by using the Galerkin method.The partially averaged Ito equation for controlled system energy is further derived by applying the stochastic averaging method for quasi-non-integrable Hamiltonian systems.The dynamical programming equation for the controlled system energy with a performance index is established by applying the stochastic dynamical programming principle and a stochastic optimal control law is obtained through solving the dynamical programming equation.A bilinear controller by using the direct method of Lyapunov is introduced.The comparison between the two controllers shows that the proposed stochastic optimal control strategy is superior to the bilinear control strategy in terms of higher control effectiveness and efficiency.  相似文献   

11.
The non-linear stochastic optimal control of quasi non-integrable Hamiltonian systems for minimizing their first-passage failure is investigated. A controlled quasi non-integrable Hamiltonian system is reduced to an one-dimensional controlled diffusion process of averaged Hamiltonian by using the stochastic averaging method for quasi non-integrable Hamiltonian systems. The dynamical programming equations and their associated boundary and final time conditions for the problems of maximization of reliability and of maximization of mean first-passage time are formulated. The optimal control law is derived from the dynamical programming equations and the control constraints. The dynamical programming equations for maximum reliability problem and for maximum mean first-passage time problem are finalized and their relationships to the backward Kolmogorov equation for the reliability function and the Pontryagin equation for mean first-passage time, respectively, are pointed out. The boundary condition at zero Hamiltonian is discussed. Two examples are worked out to illustrate the application and effectiveness of the proposed procedure.  相似文献   

12.
The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with multi-time-delayed feedback control subject to wide-band noise excitations is studied. First, the time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into an ordinary quasi-integrable Hamiltonian system. The averaged It? stochastic differential equations are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then the expression for average bifurcation parameter of the averaged system is obtained approximately and a criterion for determining the stochastic Hopf bifurcation induced by time-delayed feedback control forces in the original system using average bifurcation parameter is proposed. An example is worked out in detail to illustrate the criterion and its validity and to show the effect of time delay in feedback control on stochastic Hopf bifurcation of the system.  相似文献   

13.
A procedure for designing a feedback control to asymptotically stabilize in probability a quasi non-integrable Hamiltonion system is proposed. First, an one-dimensional averaged Itô stochastic differential equation for controlled Hamiltonian is derived from given equations of motion of the system by using the stochastic averaging method for quasi non-integrable Hamiltonian systems. Second, a dynamical programming equation for an ergodic control problem with undetermined cost function is established based on the stochastic dynamical programming principle and solved to yield the optimal control law. Third, the asymptotic stability in probability of the system is analysed by examining the sample behaviors of the completely averaged Itô differential equation at its two boundaries. Finally, the cost function and the optimal control forces are determined by the requirement of stabilizing the system. Two examples are given to illustrate the application of the proposed procedure and the effect of control on the stability of the system.  相似文献   

14.
In this paper we investigate the possibility to formulate an implicit multistep numerical method for fractional differential equations, as a discrete dynamical system to model a class of discontinuous dynamical systems of fractional order. For this purpose, the problem is continuously transformed into a set-valued problem, to which the approximate selection theorem for a class of differential inclusions applies. Next, following the way presented in the book of Stewart and Humphries (Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, 1996) for the case of continuous differential equations, we prove that a variant of Adams?CBashforth?CMoulton method for fractional differential equations can be considered as defining a discrete dynamical system, approximating the underlying discontinuous fractional system. For this purpose, the existence and uniqueness of solutions are investigated. One example is presented.  相似文献   

15.
A two-dimensional (2D) stochastic incompressible non-Newtonian fluid driven by the genuine cylindrical fractional Brownian motion (FBM) is studied with the Hurst parameter $H \in \left( {\tfrac{1} {4},\tfrac{1} {2}} \right)$ under the Dirichlet boundary condition. The existence and regularity of the stochastic convolution corresponding to the stochastic non-Newtonian fluids are obtained by the estimate on the spectrum of the spatial differential operator and the identity of the infinite double series in the analytic number theory. The existence of the mild solution and the random attractor of a random dynamical system are then obtained for the stochastic non-Newtonian systems with $H \in \left( {\tfrac{1} {2},1} \right)$ without any additional restriction on the parameter H.  相似文献   

16.
An n degree-of-freedom Hamiltonian system with r(1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the first-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging method for quasi-partially integrable Hamiltonian systems is briefly reviewed. Then, based on the averaged Itô equations, a backward Kolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of first-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and of maximization of mean first-passage time are formulated. The relationship between the backward Kolmogorov equation and the dynamical programming equation for reliability maximization, and that between the Pontryagin equation and the dynamical programming equation for maximization of mean first-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the effectiveness of feedback control in reducing first-passage failure.  相似文献   

17.
Zhu  W. Q. 《Nonlinear dynamics》2004,36(2-4):455-470
A procedure for designing a feedback control to asymptotically stabilize, with probability one, a quasi nonintegrable Hamiltonian system is proposed. First, the motion equations of a system are reduced to a one-dimensional averaged Itô stochastic differential equation for controlled Hamiltonian by using the stochastic averaging method for quasi nonintegrable Hamiltonian systems. Second, a dynamical programming equation for the ergodic control problem of the averaged system with undetermined cost function is established based on the dynamical programming principle. This equation is then solved to yield the optimal control law. Third, a formula for the Lyapunov exponent of the completely averaged Itô equation is derived by introducing a new norm for the definitions of stochastic stability and Lyapunov exponent in terms of the square root of Hamiltonian. The asymptotic stability with probability one of the originally controlled system is analysed approximately by using the Lyapunov exponent. Finally, the cost function is determined by the requirement of stabilizing the system. Two examples are given to illustrate the application of the proposed procedure and the effectiveness of control on stabilizing the system.  相似文献   

18.
Two mathematical physics’ approaches have recently gained increasing importance both in mathematical and in physical theories: (i) the fractional action-like variational approach which founds its significance in dissipative and non-conservative systems and (ii) the theory of non-standard Lagrangians which exist in some group of dissipative dynamical systems and are entitled “non-natural” by Arnold. Both approaches are discussed independently in the literature; nevertheless, we believe that the combination of both theories will help identifying more hidden solutions in certain classes of dynamical systems. Accordingly, we generalize the fractional action-like variational approach for the case of non-standard power-law Lagrangians of the form L 1+γ $(\gamma\in\mathbb{R})$ recently introduced by the author (Qual. Theory Dyn. Syst. doi:10.1007/s12346-012-0074-0, 2012). Many interesting features are discussed in some details.  相似文献   

19.
An optimal vibration control strategy for partially observable nonlinear quasi Hamiltonian systems with actuator saturation is proposed. First,a controlled partially observable non-linear system is converted into a completely observable linear control system of finite dimension based on the theorem due to Charalambous and Elliott. Then the partially averaged It stochastic differential equations and dynamical programming equation associated with the completely observable linear system are derived by using the stochastic averaging method and stochastic dynamical programming principle,respectively. The optimal control law is obtained from solving the final dynamical programming equation. The results show that the proposed control strategy has high control effectiveness and control effciency.  相似文献   

20.
The classical heat conduction equation is generalized using a generalized heat conduction law. In particular, we use the space-time Cattaneo heat conduction law that contains the Caputo symmetrized fractional derivative instead of gradient ${{\partial_x}}$ and fractional time derivative instead of the first order partial time derivative ${{\partial_t}}$ . The existence of the unique solution to the initial-boundary value problem corresponding to the generalized model is established in the space of distributions. We also obtain explicit form of the solution and compare it numerically with some limiting cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号