首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.  相似文献   

2.
Zhu  W. Q.  Deng  M. L.  Huang  Z. L. 《Nonlinear dynamics》2003,33(2):189-207
The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged Itô equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.  相似文献   

3.
A procedure for designing optimal bounded control to minimize the response of quasi-integrable Hamiltonian systems is proposed based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stochastic dynamical programming principle. The equations of motion of a controlled quasi-integrable Hamiltonian system are first reduced to a set of partially completed averaged Itô stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, the dynamical programming equation for the control problems of minimizing the response of the averaged system is formulated based on the dynamical programming principle. The optimal control law is derived from the dynamical programming equation and control constraints without solving the dynamical programming equation. The response of optimally controlled systems is predicted through solving the Fokker-Planck-Kolmogrov equation associated with fully completed averaged Itô equations. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

4.
Zhu  W. Q.  Deng  M. L. 《Nonlinear dynamics》2004,35(1):81-100
A strategy for designing optimal bounded control to minimize theresponse of quasi non-integrable Hamiltonian systems is proposed basedon the stochastic averaging method for quasi non-integrable Hamiltoniansystems and the stochastic dynamical programming principle. Theequations of motion of a controlled quasi non-integrable Hamiltoniansystem are first reduced to an one-dimensional averaged Itô stochasticdifferential equation for the Hamiltonian by using the stochasticaveraging method for quasi non-integrable Hamiltonian systems. Then, thedynamical programming equation for the control problem of minimizing theresponse of the averaged system is formulated based on the dynamicalprogramming principle. The optimal control law is derived from thedynamical programming equation and control constraints without solvingthe equation. The response of optimally controlled systems is predictedthrough solving the Fokker–Planck–Kolmogrov (FPK) equation associatedwith completely averaged Itô equation. Finally, two examples are workedout in detail to illustrate the application and effectiveness of theproposed control strategy.  相似文献   

5.
A nonlinear stochastic optimal control strategy for minimizing the first-passage failure of quasi integrable Hamiltonian systems (multi-degree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is proposed. The equations of motion for a controlled quasi integrable Hamiltonian system are reduced to a set of averaged Itô stochastic differential equations by using the stochastic averaging method. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and mean first-passage time are formulated. The optimal control law is derived from the dynamical programming equations and the control constraints. The final dynamical programming equations for these control problems are determined and their relationships to the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the mean first-passage time are separately established. The conditional reliability function and the mean first-passage time of the controlled system are obtained by solving the final dynamical programming equations or their equivalent Kolmogorov and Pontryagin equations. An example is presented to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

6.
A new procedure for designing optimal bounded control of stochastically excited multi-degree-of-freedom (MDOF) nonlinear viscoelastic systems is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the system is formulated as a quasi-integrable Hamiltonian system with viscoelastic terms and each viscoelastic term is replaced approximately by an elastically restoring force and a visco-damping force based on the randomly periodic behavior of the motion of quasi-integrable Hamiltonian system. Thus, a stochastically excited MDOF nonlinear viscoelastic system is converted to an equivalent quasi-integrable Hamiltonian system without viscoelastic terms. Then, by applying stochastic averaging, the system is further reduced to a partially averaged system of less dimension. The adjoint equation and maximum condition for the optimal control problem of the partially averaged system are derived by using the stochastic maximum principle, and the optimal bounded control force is determined from the maximum condition. Finally, the probability and statistics of the stationary response of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation (FPK) associated with the fully averaged Itô equation of the controlled system. An example is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

7.
A new procedure for designing optimal bounded control of quasi-nonintegrable Hamiltonian systems with actuator saturation is proposed based on the stochastic averaging method for quasi-nonintegrable Hamiltonian systems and the stochastic maximum principle. First, the stochastic averaging method for controlled quasi-nonintegrable Hamiltonian systems is introduced. The original control problem is converted into one for a partially averaged equation of system energy together with a partially averaged performance index. Then, the adjoint equation and the maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The bounded optimal control forces are obtained from the maximum condition and solving the forward–backward stochastic differential equations (FBSDE). For infinite time-interval ergodic control, the adjoint variable is stationary process, and the FBSDE is reduced to an ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation associated with the fully averaged Itô equation of the controlled system. For comparison, the bang–bang control is also presented. An example of two degree-of-freedom quasi-nonintegrable Hamiltonian system is worked out to illustrate the proposed procedure and its effectiveness. Numerical results show that the proposed control strategy has higher control efficiency and less discontinuous control force than the corresponding bang–bang control at the price of slightly less control effectiveness.  相似文献   

8.
A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled strongly non-linear systems under wide-band random excitation using generalized harmonic functions. Then, the dynamical programming equation for the saturated control problem is formulated from the partially averaged Itō equation based on the dynamical programming principle. The optimal control consisting of the unbounded optimal control and the bounded bang-bang control is determined by solving the dynamical programming equation. Finally, the response of the optimally controlled system is predicted by solving the reduced Fokker-Planck-Kolmogorov (FPK) equation associated with the completed averaged Itō equation. An example is given to illustrate the proposed control strategy. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and the chattering is reduced significantly comparing with the bang-bang control strategy.  相似文献   

9.
A time-delayed stochastic optimal bounded control strategy for strongly non-linear systems under wide-band random excitations with actuator saturation is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the partially averaged Itô equation for the system amplitude is derived by using the stochastic averaging method for strongly non-linear systems. The time-delayed feedback control force is approximated by a control force without time delay based on the periodically random behavior of the displacement and velocity of the system. The partially averaged Itô equation for the system energy is derived from that for the system amplitude by using Itô formula and the relation between system amplitude and system energy. Then, the adjoint equation and maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The saturated optimal control force is determined from maximum condition and solving the forward–backward stochastic differential equations (FBSDEs). For infinite time-interval ergodic control, the adjoint variable is stationary process and the FBSDE is reduced to a ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained from solving the Fokker–Plank–Kolmogorov (FPK) equation associated with the fully averaged Itô equation of the controlled system. For comparison, the optimal control forces obtained from the time-delayed bang–bang control and the control without considering time delay are also presented. An example is worked out to illustrate the proposed procedure and its advantages.  相似文献   

10.
A NEW STOCHASTIC OPTIMAL CONTROL STRATEGY FOR HYSTERETIC MR DAMPERS   总被引:3,自引:0,他引:3  
I. INTRODUCTION Magneto-rheological (MR) ?uid as a smart material possesses fairly good essential characteristics suchas reversible change between liquid and semi-solid in milliseconds with a controllable yield strengthwhen exposed to a magnetic ?eld. A…  相似文献   

11.
A stochastic optimal control strategy for a slightly sagged cable using support motion in the cable axial direction is proposed.The nonlinear equation of cable motion in plane is derived and reduced to the equations for the first two modes of cable vibration by using the Galerkin method.The partially averaged Ito equation for controlled system energy is further derived by applying the stochastic averaging method for quasi-non-integrable Hamiltonian systems.The dynamical programming equation for the controlled system energy with a performance index is established by applying the stochastic dynamical programming principle and a stochastic optimal control law is obtained through solving the dynamical programming equation.A bilinear controller by using the direct method of Lyapunov is introduced.The comparison between the two controllers shows that the proposed stochastic optimal control strategy is superior to the bilinear control strategy in terms of higher control effectiveness and efficiency.  相似文献   

12.
A new procedure for designing optimal control of quasi non-integrable Hamiltonian systems under stochastic excitations is proposed based on the stochastic averaging method for quasi non-integrable Hamiltonian systems and the stochastic maximum principle. First, the control problem consisting of 2n-dimensional equations governing the controlled quasi non-integrable system and performance index is converted into a partially averaged one consisting of one-dimensional equation of the controlled system and performance index by using the stochastic averaging method. Then, the adjoint equation and the maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The optimal control forces are determined from the maximum condition and solving the forward?Cbackward stochastic differential equations (FBSDE). For infinite time-interval ergodic control, the adjoint variable is a stationary process and the FBSDE is reduced to a partial differential equation. Finally, the response statistics of optimally controlled system is predicted by solving the Fokker?CPlank equation (FPE) associated with the fully averaged It? equation of the controlled system. An example of two degree-of-freedom (DOF) quasi non-integrable Hamiltonian system is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

13.
A new bounded optimal control strategy for multi-degree-of-freedom (MDOF) quasi nonintegrable-Hamiltonian systems with actuator saturation is proposed. First, an n-degree-of-freedom (n-DOF) controlled quasi nonintegrable-Hamiltonian system is reduced to a partially averaged Itô stochastic differential equation by using the stochastic averaging method for quasi nonintegrable-Hamiltonian systems. Then, a dynamical programming equation is established by using the stochastic dynamical programming principle, from which the optimal control law consisting of optimal unbounded control and bang–bang control is derived. Finally, the response of the optimally controlled system is predicted by solving the Fokker–Planck–Kolmogorov (FPK) equation associated with the fully averaged Itô equation. An example of two controlled nonlinearly coupled Duffing oscillators is worked out in detail. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and that chattering is reduced significantly compared with the bang–bang control strategy.  相似文献   

14.
A stochastic minimax semi-active control strategy for multi-degrees-of-freedom (MDOF) strongly nonlinear systems under combined harmonic and wide-band noise excitations is proposed. First, a stochastic averaging procedure is introduced for controlled uncertain strongly nonlinear systems using generalized harmonic functions and the control forces produced by Magneto-rheological (MR) dampers are split into the passive part and the active part. Then, a worst-case optimal control strategy is derived by solving a stochastic differential game problem. The worst-case disturbances and the optimal semi-active controls are obtained by solving the Hamilton–Jacobi–Isaacs (HJI) equations with the constraints of disturbance bounds and MR damper dynamics. Finally, the responses of optimally controlled MDOF nonlinear systems are predicted by solving the Fokker–Planck–Kolmogorov (FPK) equation associated with the fully averaged Itô equations. Two examples are worked out in detail to illustrate the proposed control strategy. The effectiveness of the proposed control strategy is verified by using the results from Monte Carlo simulation.  相似文献   

15.
A stochastic optimal control method for nonlinear hysteretic systems under exter-nally and/or parametrically random excitations is presented and illustrated with an example ofhysteretic column system.A hysteretic system subject to random excitation is first replaced bya nonlinear non-hysteretic stochastic system.An It stochastic differential equation for the to-tal energy of the system as a one-dimensional controlled diffusion process is derived by usingthe stochastic averaging method of energy envelope.A dynamical programming equation is thenestablished based on the stochastic dynamical programming principle and solved to yield the op-timal control force.Finally,the responses of uncontrolled and controlled systems are evaluatedto determine the control efficacy.It is shown by numerical results that the proposed stochasticoptimal control method is more effective and efficient than other optimal control methods.  相似文献   

16.
拟哈密顿系统非线性随机最优控制   总被引:2,自引:0,他引:2  
主要介绍近十几年来拟哈密顿系统非线性随机最优控制理论方法及其应用的研究成果, 包括基于拟哈密顿系统随机平均法与随机动态规划原理的非线性随机最优控制基本策略, 即响应极小化控制、随机稳定化、首次穿越损坏最小化控制、以概率密度为目标的控制, 为将它们应用于工程实际而作的部分可观测系统最优控制、有界控制、时滞控制、半主动控制、极小极大控制的进一步研究, 以及综合考虑这些实际问题的非线性随机最优控制的综合策略, 非线性随机最优控制在滞迟系统、分数维系统等中的若干应用, 介绍与这些研究有关的背景, 并指出今后有待进一步研究的问题.  相似文献   

17.
In this paper two different control strategies designed to alleviate the response of quasi partially integrable Hamiltonian systems subjected to stochastic excitation are proposed. First, by using the stochastic averaging method for quasi partially integrable Hamiltonian systems, an n-DOF controlled quasi partially integrable Hamiltonian system with stochastic excitation is converted into a set of partially averaged Itô stochastic differential equations. Then, the dynamical programming equation associated with the partially averaged Itô equations is formulated by applying the stochastic dynamical programming principle. In the first control strategy, the optimal control law is derived from the dynamical programming equation and the control constraints without solving the dynamical programming equation. In the second control strategy, the optimal control law is obtained by solving the dynamical programming equation. Finally, both the responses of controlled and uncontrolled systems are predicted through solving the Fokker-Plank-Kolmogorov equation associated with fully averaged Itô equations. An example is worked out to illustrate the application and effectiveness of the two proposed control strategies.  相似文献   

18.
A stochastic fractional optimal control strategy for quasi-integrable Hamiltonian systems with fractional derivative damping is proposed. First, equations of the controlled system are reduced to a set of partially averaged It $\hat{o}$ stochastic differential equations for the energy processes by applying the stochastic averaging method for quasi-integrable Hamiltonian systems and a stochastic fractional optimal control problem (FOCP) of the partially averaged system for quasi-integrable Hamiltonian system with fractional derivative damping is formulated. Then the dynamical programming equation for the ergodic control of the partially averaged system is established by using the stochastic dynamical programming principle and solved to yield the fractional optimal control law. Finally, an example is given to illustrate the application and effectiveness of the proposed control design procedure.  相似文献   

19.
An optimal vibration control strategy for partially observable nonlinear quasi Hamiltonian systems with actuator saturation is proposed. First,a controlled partially observable non-linear system is converted into a completely observable linear control system of finite dimension based on the theorem due to Charalambous and Elliott. Then the partially averaged It stochastic differential equations and dynamical programming equation associated with the completely observable linear system are derived by using the stochastic averaging method and stochastic dynamical programming principle,respectively. The optimal control law is obtained from solving the final dynamical programming equation. The results show that the proposed control strategy has high control effectiveness and control effciency.  相似文献   

20.
Dynamic programming is a very useful tool in solving optimization and optimal control problems. Here, the Approximate Dynamic Programming (ADP) and the notion of neural networks based predictive control are combined with a model-free control method based on SPSA (Simultaneous perturbation stochastic approximation), and a novel ADP based model-free predictive control strategy for nonlinear systems is proposed. Dynamic programming is used to adjust the control parameters in the novel model-free control method and the notion of predictive control is introduced to modify the whole control structure. Finally, the proposed ADP based model-free predictive control strategy is applied to solve nonlinear tracking problems and the effectiveness of this novel control method is fully illustrated though simulation tests on two typical nonlinear systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号