首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new procedure for designing optimal control of quasi non-integrable Hamiltonian systems under stochastic excitations is proposed based on the stochastic averaging method for quasi non-integrable Hamiltonian systems and the stochastic maximum principle. First, the control problem consisting of 2n-dimensional equations governing the controlled quasi non-integrable system and performance index is converted into a partially averaged one consisting of one-dimensional equation of the controlled system and performance index by using the stochastic averaging method. Then, the adjoint equation and the maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The optimal control forces are determined from the maximum condition and solving the forward?Cbackward stochastic differential equations (FBSDE). For infinite time-interval ergodic control, the adjoint variable is a stationary process and the FBSDE is reduced to a partial differential equation. Finally, the response statistics of optimally controlled system is predicted by solving the Fokker?CPlank equation (FPE) associated with the fully averaged It? equation of the controlled system. An example of two degree-of-freedom (DOF) quasi non-integrable Hamiltonian system is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

2.
An optimal vibration control strategy for partially observable nonlinear quasi Hamiltonian systems with actuator saturation is proposed. First,a controlled partially observable non-linear system is converted into a completely observable linear control system of finite dimension based on the theorem due to Charalambous and Elliott. Then the partially averaged It stochastic differential equations and dynamical programming equation associated with the completely observable linear system are derived by using the stochastic averaging method and stochastic dynamical programming principle,respectively. The optimal control law is obtained from solving the final dynamical programming equation. The results show that the proposed control strategy has high control effectiveness and control effciency.  相似文献   

3.
A stochastic minimax optimal control strategy for partially observable uncertain quasi-Hamiltonian systems is proposed. First, the stochastic optimal control problem of a partially observable nonlinear uncertain quasi-Hamiltonian system is converted into that of a completely observable linear uncertain system based on a theorem due to Charalambous and Elliot. Then, the converted stochastic optimal control problem is solved by a minimax optimal control strategy based on stochastic averaging method and stochastic differential game. The worst-case disturbances and the optimal controls are obtained by solving a Hamilton-Jacobi-Isaacs (HJI) equation. As an example, the stochastic minimax optimal control of a partially observable Duffing–van der Pol oscillator with uncertain disturbances is worked out in detail to illustrate the procedure and effectiveness of the proposed control strategy.  相似文献   

4.
A new procedure for designing optimal bounded control of quasi-nonintegrable Hamiltonian systems with actuator saturation is proposed based on the stochastic averaging method for quasi-nonintegrable Hamiltonian systems and the stochastic maximum principle. First, the stochastic averaging method for controlled quasi-nonintegrable Hamiltonian systems is introduced. The original control problem is converted into one for a partially averaged equation of system energy together with a partially averaged performance index. Then, the adjoint equation and the maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The bounded optimal control forces are obtained from the maximum condition and solving the forward–backward stochastic differential equations (FBSDE). For infinite time-interval ergodic control, the adjoint variable is stationary process, and the FBSDE is reduced to an ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation associated with the fully averaged Itô equation of the controlled system. For comparison, the bang–bang control is also presented. An example of two degree-of-freedom quasi-nonintegrable Hamiltonian system is worked out to illustrate the proposed procedure and its effectiveness. Numerical results show that the proposed control strategy has higher control efficiency and less discontinuous control force than the corresponding bang–bang control at the price of slightly less control effectiveness.  相似文献   

5.
A time-delayed stochastic optimal bounded control strategy for strongly non-linear systems under wide-band random excitations with actuator saturation is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the partially averaged Itô equation for the system amplitude is derived by using the stochastic averaging method for strongly non-linear systems. The time-delayed feedback control force is approximated by a control force without time delay based on the periodically random behavior of the displacement and velocity of the system. The partially averaged Itô equation for the system energy is derived from that for the system amplitude by using Itô formula and the relation between system amplitude and system energy. Then, the adjoint equation and maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The saturated optimal control force is determined from maximum condition and solving the forward–backward stochastic differential equations (FBSDEs). For infinite time-interval ergodic control, the adjoint variable is stationary process and the FBSDE is reduced to a ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained from solving the Fokker–Plank–Kolmogorov (FPK) equation associated with the fully averaged Itô equation of the controlled system. For comparison, the optimal control forces obtained from the time-delayed bang–bang control and the control without considering time delay are also presented. An example is worked out to illustrate the proposed procedure and its advantages.  相似文献   

6.
A NEW STOCHASTIC OPTIMAL CONTROL STRATEGY FOR HYSTERETIC MR DAMPERS   总被引:3,自引:0,他引:3  
I. INTRODUCTION Magneto-rheological (MR) ?uid as a smart material possesses fairly good essential characteristics suchas reversible change between liquid and semi-solid in milliseconds with a controllable yield strengthwhen exposed to a magnetic ?eld. A…  相似文献   

7.
本文针对受到非平稳地震激励作用下的连体结构提出一种基于时域显式法的瞬时最优控制算法。该算法可以利用有限元模型施加脉冲荷载快速建立受控模型,可以避免系统状态部分可观测的问题,而且可以根据需要单独调控子结构受控效果的优点。一连体高层建筑结构算例用来说明该算法,并将该算法与传统瞬时最优控制算法比较,结果表明本文算法具有良好的控制效果。  相似文献   

8.
This paper presents a study of non-linear response of a fluttered, cantilevered beam subjected to a random follower force at the free end. The random follower force is characterized as the sum of a post-critical static force and a stationary process with a zero mean. First, the Ritz-Galerkin method is applied to yield a set of discretized system equations. The system equations are then partially uncoupled by a special modal analysis based on normal modes of the corresponding linear, autonomous system at the onset of fluttering. Next, the stochastic averaging method is utilized to get Ito's differential equation governing the amplitude of the fluttered mode. Finally, the probability density function for the amplitude of the fluttered mode is obtained by solving the FPK equation. Numerical results show that the probability density function for the amplitude of the fluttered mode is determined by the sample behavior of the beam near the trivial equilibrium configuration.  相似文献   

9.
A new procedure for designing optimal bounded control of stochastically excited multi-degree-of-freedom (MDOF) nonlinear viscoelastic systems is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the system is formulated as a quasi-integrable Hamiltonian system with viscoelastic terms and each viscoelastic term is replaced approximately by an elastically restoring force and a visco-damping force based on the randomly periodic behavior of the motion of quasi-integrable Hamiltonian system. Thus, a stochastically excited MDOF nonlinear viscoelastic system is converted to an equivalent quasi-integrable Hamiltonian system without viscoelastic terms. Then, by applying stochastic averaging, the system is further reduced to a partially averaged system of less dimension. The adjoint equation and maximum condition for the optimal control problem of the partially averaged system are derived by using the stochastic maximum principle, and the optimal bounded control force is determined from the maximum condition. Finally, the probability and statistics of the stationary response of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation (FPK) associated with the fully averaged Itô equation of the controlled system. An example is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

10.
A stochastic fractional optimal control strategy for quasi-integrable Hamiltonian systems with fractional derivative damping is proposed. First, equations of the controlled system are reduced to a set of partially averaged It $\hat{o}$ stochastic differential equations for the energy processes by applying the stochastic averaging method for quasi-integrable Hamiltonian systems and a stochastic fractional optimal control problem (FOCP) of the partially averaged system for quasi-integrable Hamiltonian system with fractional derivative damping is formulated. Then the dynamical programming equation for the ergodic control of the partially averaged system is established by using the stochastic dynamical programming principle and solved to yield the fractional optimal control law. Finally, an example is given to illustrate the application and effectiveness of the proposed control design procedure.  相似文献   

11.
A stochastic optimal control strategy for a slightly sagged cable using support motion in the cable axial direction is proposed.The nonlinear equation of cable motion in plane is derived and reduced to the equations for the first two modes of cable vibration by using the Galerkin method.The partially averaged Ito equation for controlled system energy is further derived by applying the stochastic averaging method for quasi-non-integrable Hamiltonian systems.The dynamical programming equation for the controlled system energy with a performance index is established by applying the stochastic dynamical programming principle and a stochastic optimal control law is obtained through solving the dynamical programming equation.A bilinear controller by using the direct method of Lyapunov is introduced.The comparison between the two controllers shows that the proposed stochastic optimal control strategy is superior to the bilinear control strategy in terms of higher control effectiveness and efficiency.  相似文献   

12.
随机桁架结构的非平稳随机动力响应分析   总被引:1,自引:0,他引:1  
本文研究了随机桁架结构在非平稳随机激励下的动力响应问题。在利用随机因子法分析随机结构动力特性的基础上,给出了一种分析随机结构非平稳随机响应的新方法。从结构非平稳随机响应的表达式出发,同时考虑桁架结构的物理参数、几何尺寸的随机性,利用求解随机变量函数矩的方法和求解随机变量数字特征的代数综合法,导出了随机桁架结构在非平稳随机激励下位移响应均方值和应力响应均方值的均值、方差和变异系数的计算表达式。通过算例,分析了结构物理参数和几何尺寸的随机性对结构位移响应均方值和应力响应均方值随机变量随机性的影响。本文方法具有对随机结构进行一次动力分析便可求得动力响应的数字特征,且可以考察结构任一参数的随机性对结构非平稳随机响应分析结果的影响之优点。  相似文献   

13.
拟哈密顿系统非线性随机最优控制   总被引:2,自引:0,他引:2  
主要介绍近十几年来拟哈密顿系统非线性随机最优控制理论方法及其应用的研究成果, 包括基于拟哈密顿系统随机平均法与随机动态规划原理的非线性随机最优控制基本策略, 即响应极小化控制、随机稳定化、首次穿越损坏最小化控制、以概率密度为目标的控制, 为将它们应用于工程实际而作的部分可观测系统最优控制、有界控制、时滞控制、半主动控制、极小极大控制的进一步研究, 以及综合考虑这些实际问题的非线性随机最优控制的综合策略, 非线性随机最优控制在滞迟系统、分数维系统等中的若干应用, 介绍与这些研究有关的背景, 并指出今后有待进一步研究的问题.  相似文献   

14.
A spectral finite element method is proposed to investigate the stochastic response of an axially loaded composite Timoshenko beam with solid or thin-walled closed section exhibiting bending–torsion materially coupling under the stochastic excitations with stationary and ergodic properties. The effects of axial force, shear deformation (SD) and rotary inertia (RI) as well as bending–torsion coupling are considered in the present study. First, the damped general governing differential equations of motion of an axially loaded composite Timoshenko beam are derived. Then, the spectral finite element formulation is developed in the frequency domain using the dynamic shape functions based on the exact solutions of the governing equations in undamped free vibration, which is used to compute the mean square displacement response of axially loaded composite Timoshenko beams. Finally, the proposed method is illustrated by its application to a specific example to investigate the effects of bending–torsion coupling, axial force, SD and RI on the stochastic response of the composite beam.  相似文献   

15.
A stochastic averaging method of quasi integrable and resonant Hamiltonian systems under excitation of fractional Gaussian noise(fGn) with the Hurst index 1/2 H 1 is proposed. First, the definition and the basic property of f Gn and related fractional Brownian motion(fBm) are briefly introduced. Then, the averaged fractional stochastic differential equations(SDEs) for the first integrals and combinations of angle variables of the associated Hamiltonian systems are derived. The stationary probability density and statistics of the original systems are then obtained approximately by simulating the averaged SDEs numerically. An example is worked out to illustrate the proposed stochastic averaging method. It is shown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of original system agree well.  相似文献   

16.
The stability analysis method is developed for distributed dynamic problems with relaxed assumptions imposed on solutions. The problem is motivated by structural vibrations with external time-dependent parametric excitations which are controlled using surface-mounted or -embedded actuators and sensors. The strong form of equations involves irregularities which lead to computational difficulties for estimation and control problems. In order to avoid irregular terms resulting from differentiation of the force and moment terms the dynamics equations are written in a weak form. The weak form of dynamics equations of linear mechanical structures is obtained using variational calculus. The study of stability of stochastic weak system is based on examining properties of Liapunov functional along a weak solution.  相似文献   

17.
This work proposes a vibration-based damage evaluation method that can detect, locate, and size damage utilizing only a few of the lower mode shapes. The proposed method is particularly advantageous for beam-like structures with uncertain applied axial load, mass density, and foundation stiffness. Based on a small damage assumption, a linear relationship between damaged and undamaged curvatures is revealed in the context of elasticity. It turns out that the resulting damage index equation inherently suffers from singularities near inflection nodes. The transformation of the problem into the multi-resolution wavelet domain provides a set of coupled linear equations. With the aid of the singular value decomposition technique, the solution to the damage index equation is achieved in the wavelet space. Next, the desired physical solution to the damage index equation is reconstructed from the one in the wavelet space. The performance of the proposed method is compared with two existing damage detection methods using a set of numerical simulations. The proposed method attempts to resolve the mode selection problem, the singularity problem, the axial force problem, and the absolute severity estimation problem, all of which remained unsolved by earlier attempts.  相似文献   

18.
Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.  相似文献   

19.
This study derives a model for the vortex-induced vibration and the stochastic response of a tall building in strong non-synoptic wind regimes. The vortex-induced stochastic dynamics is obtained by combining turbulent-induced buffeting force, aeroelastic force and vortex-induced force. The governing equations of motion in non-synoptic winds account for the coupled motion with nonlinear aerodynamic damping and non-stationary wind loading. An engineering model, replicating the features of thunderstorm downbursts, is employed to simulate strong non-synoptic winds and non-stationary wind loading. This study also aims to examine the effectiveness of the wavelet-Galerkin (WG) approximation method to numerically solve the vortex-induced stochastic dynamics of a tall building with complex wind loading and coupled equations of motions. In the WG approximation method, the compactly supported Daubechies wavelets are used as orthonormal basis functions for the Galerkin projection, which transforms the time-dependent coupled, nonlinear, non-stationary stochastic dynamic equations into random algebraic equations in the wavelet space. An equivalent single-degree-of-freedom building model and a multi-degree-of-freedom model of the benchmark Commonwealth Advisory Aeronautical Research Council (CAARC) tall building are employed for the formulation and numerical analyses. Preliminary parametric investigations on the vortex-shedding effects and the stochastic dynamics of the two building models in non-synoptic downburst winds are discussed. The proposed WG approximation method proves to be very powerful and promising to approximately solve various cases of stochastic dynamics and the associated equations of motion accounting for vortex shedding effects, complex wind loads, coupling, nonlinearity and non-stationarity.  相似文献   

20.
An optimal bounded control strategy for smart structure systems as controlled Hamiltonian systems with random excitations and noised observations is proposed. The basic dynamic equations for a smart structure system with smart sensors and actuators are firstly given. The nonlinear stochastic control system with noised observations is then obtained from the simplified smart structure system, and the system is expressed by generalized Hamiltonian equations with control, random excitation and dissipative forces. The optimal control problem for nonlinear stochastic systems with noised observations includes two parts: optimal state estimation and optimal response control based on estimated states, which are coupled each other. The probability density of optimally estimated systems has generally infinite dimensions based on the separation theorem. The proposed optimal control strategy gives an approximate separate solution. First, the optimally estimated system state is determined by the observations based on the extended Kalman filter, and the estimated nonlinear system with controls and stochastic excitations is obtained which has finite-dimensional probability density. Second, the dynamical programming equation for the estimated system is determined based on the stochastic dynamical programming principle. The control boundedness due to actuator saturation is considered, and the optimal bounded control law is obtained by the programming equation with the bounded control constraint. The optimal control depends on the estimated system state which is determined by noised observations. The proposed optimal bounded control strategy is finally applied to a single-degree-of-freedom nonlinear stochastic system with control and noised observation. The remarkable vibration control effectiveness is illustrated with numerical results. Thus the proposed optimal bounded control strategy is promising for application to nonlinear stochastic smart structure systems with noised observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号