首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13143篇
  免费   1188篇
  国内免费   21篇
工业技术   14352篇
  2023年   168篇
  2022年   91篇
  2021年   409篇
  2020年   322篇
  2019年   372篇
  2018年   437篇
  2017年   494篇
  2016年   578篇
  2015年   490篇
  2014年   708篇
  2013年   948篇
  2012年   985篇
  2011年   1225篇
  2010年   843篇
  2009年   868篇
  2008年   704篇
  2007年   583篇
  2006年   486篇
  2005年   415篇
  2004年   404篇
  2003年   374篇
  2002年   301篇
  2001年   230篇
  2000年   215篇
  1999年   178篇
  1998年   317篇
  1997年   203篇
  1996年   162篇
  1995年   102篇
  1994年   111篇
  1993年   93篇
  1992年   74篇
  1991年   63篇
  1990年   46篇
  1989年   42篇
  1988年   35篇
  1987年   18篇
  1986年   25篇
  1985年   34篇
  1984年   22篇
  1983年   13篇
  1982年   9篇
  1981年   13篇
  1980年   19篇
  1979年   16篇
  1977年   11篇
  1976年   17篇
  1974年   14篇
  1971年   8篇
  1970年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Heparanase (Hpse) is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains. Its upregulated expression is implicated in tumor growth, metastasis and angiogenesis, thus making it an attractive target in cancer therapeutics. Currently, a few small molecule inhibitors have been reported to inhibit Hpse, with promising oral administration and pharmacokinetic (PK) properties. In the present study, a ligand-based pharmacophore model was generated from a dataset of well-known active small molecule Hpse inhibitors which were observed to display favorable PK properties. The compounds from the InterBioScreen database of natural (69,034) and synthetic (195,469) molecules were first filtered for their drug-likeness and the pharmacophore model was used to screen the drug-like database. The compounds acquired from screening were subjected to molecular docking with Heparanase, where two molecules used in pharmacophore generation were used as reference. From the docking analysis, 33 compounds displayed higher docking scores than the reference and favorable interactions with the catalytic residues. Complex interactions were further evaluated by molecular dynamics simulations to assess their stability over a period of 50 ns. Furthermore, the binding free energies of the 33 compounds revealed 2 natural and 2 synthetic compounds, with better binding affinities than reference molecules, and were, therefore, deemed as hits. The hit compounds presented from this in silico investigation could act as potent Heparanase inhibitors and further serve as lead scaffolds to develop compounds targeting Heparanase upregulation in cancer.  相似文献   
2.
Hypoxic–ischemic encephalopathy (HIE) is a devastating neonatal brain condition caused by lack of oxygen and limited blood flow. Environmental enrichment (EE) is a classic paradigm with a complex stimulation of physical, cognitive, and social components. EE can exert neuroplasticity and neuroprotective effects in immature brains. However, the exact mechanism of EE on the chronic condition of HIE remains unclear. HIE was induced by a permanent ligation of the right carotid artery, followed by an 8% O2 hypoxic condition for 1 h. At 6 weeks of age, HIE mice were randomly assigned to either standard cages or EE cages. In the behavioral assessments, EE mice showed significantly improved motor performances in rotarod tests, ladder walking tests, and hanging wire tests, compared with HIE control mice. EE mice also significantly enhanced cognitive performances in Y-maze tests. Particularly, EE mice showed a significant increase in Cav 2.1 (P/Q type) and presynaptic proteins by molecular assessments, and a significant increase of Cav 2.1 in histological assessments of the cerebral cortex and hippocampus. These results indicate that EE can upregulate the expression of the Cav 2.1 channel and presynaptic proteins related to the synaptic vesicle cycle and neurotransmitter release, which may be responsible for motor and cognitive improvements in HIE.  相似文献   
3.
Repetitive heating and cooling cycles inevitably cause crack damage of hot gas components of gas turbine engines, such as blades and vanes. In this study the self-healing capacity is investigated of mullite + ytterbium monosilicate (Yb2SiO5) as EBC material with Ti2AlC MAX phase particles embedded as a crack-healing agent. The effect of Ti2AlC in the EBC was compared with the self-healing ability of the mullite + Yb2SiO5 material. After introducing cracks by Vickers indentation on the surface of each sample, crack healing was realized by controlling the temperature and time during the post-heat-treatment process. For the mullite + Yb2SiO5 composite with Ti2AlC particles, crack healing occurred at 1000 °C, while in the case of the mullite + Yb2SiO5 composite without Ti2AlC, a sustained temperature of 1300 °C or higher was required. Compared with the healing of the mullite + Yb2SiO5 composite by the formation of a eutectic phase, the addition of Ti2AlC promoted healing via the oxidation of Ti and Al. Notably, the surface formation of a ternary oxide of Ti–Yb–O was confirmed, which completely covered the damage area. Consequently, the addition of a Ti2AlC MAX phase to the EBC composite resulted in a complete strength recovery, while the mullite + Yb2SiO5 composite without Ti2AlC showed a strength recovery of about 80%. Furthermore, by analyzing the indentation load–displacement curve to indicate the role of Ti2AlC, the addition of Ti2AlC improved both the hardness and stiffness of the composite.  相似文献   
4.
Wireless Personal Communications - Random Access techniques are many, most of which are designed for a limited number of mobile nodes. However, in a 5G Internet of Things environment, the design of...  相似文献   
5.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
6.
7.
8.
The advent of high-throughput sequencing methods allowed researchers to fully characterize microbial community in environmental samples, which is crucial to better understand their health effects upon exposures. In our study, we investigated bacterial and fungal community in indoor and outdoor air of nine classrooms in three elementary schools in Seoul, Korea. The extracted bacterial 16S rRNA gene and fungal ITS regions were sequenced, and their taxa were identified. Quantitative polymerase chain reaction for total bacteria DNA was also performed. The bacterial community was richer in outdoor air than classroom air, whereas fungal diversity was similar indoors and outdoors. Bacteria such as Enhydrobacter, Micrococcus, and Staphylococcus that are generally found in human skin, mucous membrane, and intestine were found in great abundance. For fungi, Cladosporium, Clitocybe, and Daedaleopsis were the most abundant genera in classroom air and mostly related to outdoor plants. Bacterial community composition in classroom air was similar among all classrooms but differed from that in outdoor air. However, indoor and outdoor fungal community compositions were similar for the same school but different among schools. Our study indicated the main source of airborne bacteria in classrooms was likely human occupants; however, classroom airborne fungi most likely originated from outdoors.  相似文献   
9.
The materials typically used for oxygen transport membranes, Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) tend to decompose due to their low thermochemical stability under reducing atmosphere. Fe- and Co-doped SrTiO3 (SrTi1-x-yCoxFeyO3-δ, x + y ≤ 0.35) (STCF) materials showing an oxygen transport comparable to LSCF have great potential for application in ion-transport-devices. In this study, the thermochemical stability of pure perovskite-structured STCF was investigated after annealing in a syngas atmosphere at 600–900 °C. The phase composition of the materials after annealing was characterized by means of X-ray diffraction (XRD). The thermodynamic activities of SrO, FeO, and CoO in the STCF materials were evaluated using Knudsen effusion mass spectrometry (KEMS). Co-doped SrTiO3 (STC) materials were not stable after annealing in the syngas atmosphere above 5 mol% Co-substitution. Ruddlesden-Popper-like phases and SrCO3 were detected after annealing at 600 °C. In contrast, Fe substitution (STF) showed good stability after annealing in syngas upto 35 mol% substitution.  相似文献   
10.
To achieve the stable dispersion of 1D van der Waals crystal Mo6S3I6 in aqueous media, the tri-block copolymer (Poloxamer) is used as dispersant. The head group of Poloxamer, hydrophobic polypropylene oxide parts can be adsorbed to Mo6S3I6 surface by hydrophobic interaction and the tail group with hydrophilic polyethylene oxide exposed to the outside of the Mo6S3I6 is soluble in water and can form sufficient steric hindrance, resulting in stable aqueous dispersion in nm scale. The excellent biocompatibility of aqueous dispersed nm scale 1D Mo6S3I6 was demonstrated by effective proliferation of C2C12 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号