首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the oxidation‐induced crack healing of Al2O3 containing 20 vol.% of Ti2AlC MAX phase inclusions as healing particles was studied. The oxidation kinetics of the Ti2AlC particles having an average diameter of about 10 μm was studied via thermogravimetry and/or differential thermal analysis. Surface cracks of about 80 μm long and 0.5 μm wide were introduced into the composite by Vickers indentation. After annealing in air at high temperatures, the cracks were filled with stable oxides of Ti and Al as a result of the decomposition of the Ti2AlC particles. Crack healing was studied at 800, 900, and 1000°C for 0.25, 1, 4, and 16 hours, and the strength recovery was measured by 4‐point bending. Upon indentation, the bending strength of the samples dropped by about 50% from 402 ± 35 to 229 ± 14 MPa. This bending strength increased to about 90% of the undamaged material after annealing at 1000°C for just 15 minutes, while full strength was recovered after annealing for 1 hour. As the healing temperature was reduced to 900 and 800°C, the time required for full‐strength recovery increased to 4 and 16 hours, respectively. The initial bending strength and the fracture toughness of the composite material were found to be about 19% lower and 20% higher than monolithic alumina, respectively, making this material an attractive substitute for monolithic alumina used in high‐temperature applications.  相似文献   

2.
《Ceramics International》2022,48(20):29919-29928
MoSi2 doped Yb2Si2O7 composites were designed to extend the lifetime of Yb2Si2O7 environmental barrier coatings (EBCs) via self-healing cracks during high-temperature applications. Yb2Si2O7–Yb2SiO5–MoSi2 composites with different mass fractions were prepared by applying spark plasma sintering. X-ray diffraction results confirmed that the composites consisted of Yb2Si2O7, Yb2SiO5, and MoSi2. The thermal expansion coefficients (CTEs) of the composites increased with an increase in the MoSi2 content. The average CTE of the 15 wt% MoSi2 doped Yb2Si2O7 composite was 5.24 × 10?6 K?1, indicating that it still meets the CTE requirement of EBC materials. After being pre-cracked by using the Vickers indentation technique, the samples were annealed for 0.5 h at 1100 or 1300 °C to evaluate the crack-healing ability. Microstructural studies showed that cracks in 15 wt% MoSi2 doped Yb2Si2O7 composites were fully healed during annealing at 1300 °C. Two mechanisms may be responsible for crack healing. First, the cracks were filled with SiO2 glass formed by MoSi2 oxidation. Second, the formed SiO2 continued to react with Yb2SiO5 to form Yb2Si2O7, which can cause cracks to heal owing to volumetric expansion. The Yb2Si2O7 formation with smaller volume expansion is more beneficial.  相似文献   

3.
In an effort to overcome the property degradation of Ti2AlC MAX phase coating used in harsh environments, we fabricated a solid solution Ti2(Al0.6Sn0.4)C coating with amount of Ti5Sn3 (20 wt.%) by a combined technique composing of magnetron sputtering and post-heat treatment. The cracks induced by Vickers indentation on coating surface were self-healed at 700 ℃, which is the lowest self-healing temperature among the Al-based MAX phase coatings till now. The structural evolution and kinetic diffusion revealed that the formation of SnO2 is the key factor to achieve the crack self-healing at such a low temperature for Al-based MAX phase coatings. Additionally, the self-healed Ti2(Al0.6Sn0.4)C coating exhibited better oxidation resistance compared to the unhealed one at 800 ℃. The results provide a novel and facile strategy to develop the protective MAX phase coatings with high performance at high temperature by partially substituting Al with Sn.  相似文献   

4.
In situ microcantilever bending tests were carried out to evaluate the healing efficiency of pre-notched Ti2AlC ceramic after annealing at 1200 °C for 1.5 h. Microcantilevers of different orientations were fabricated with focused ion beam method at different locations, i.e. in a singular Ti2AlC grain, at a grain boundary or at the Ti2AlC–Al2O3 interface after healing. Ti2AlC microcantilever shows an anisotropic bending strength (ranging between 9.6 GPa and 4.6 GPa depending on the precise crystallographic orientations) that is closely related to the different atomic bonds in the layered structure. After healing, the Ti2AlC–Al2O3 microcantilevers exhibit almost the same strength of about 5.2 GPa, i.e. slightly higher than the cleavage strength (4.6 GPa) of the initial Ti2AlC microcantilevers. It suggests that the orientation of the matrix grain has no significant influence on the strength of healed microcantilevers. Furthermore, it turns out that the strength of the microcantilever with a healed grain boundary is at least twice the strength of the initial Ti2AlC cantilever with a grain boundary. It is concluded that the oxidation dominated self-healing mechanism of Ti2AlC ceramics can result in a perfect recovery of mechanical performance. The paper shows that the in situ microcantilever bending test provides a quantitative method for the evaluation of the strength of self-healing ceramics.  相似文献   

5.
《Ceramics International》2021,47(24):34802-34809
Yb2Si2O7 is a popular environmental barrier coating; however, it decomposes into Yb2SiO5 in high-temperature steam environments. The thermal mismatch between Yb2Si2O7 and Yb2SiO5 leads to the cracking and failure of the disilicate coating via oxidation. Dispersing SiC nanofillers into the Yb2Si2O7 matrix is suggested to maintain the Yb2Si2O7 matrix and promote crack self-healing. This study is aimed at clarifying the effect of water vapor on the self-healing ability of such composites. X-ray diffraction analysis and scanning electron microscopy were used to monitor the surface composition and the crack formation, respectively, in 10 vol% SiC-dispersed Yb2Si2O7 composites. Annealing at temperatures higher than 750 °C in air or in a water vapor rich atmosphere led to strength recovery and the self-healing of indentation-induced surface cracks owing to volume expansion during the oxidation of SiC. The self-healing effect was influenced by the oxidation time and temperature. Rapid diffusion of H2O as an oxidizer into the SiO2 layer promoted self-healing in a water vapor rich atmosphere. However, accelerated oxidation at temperatures higher than 1150 °C formed bubbles on the surface. Fabricating composites with a small amount of Yb2SiO5 will be a solution to these problems.  相似文献   

6.
Environmental barrier coatings (EBCs) are crucial to the reliability and durability of SiCf/SiC composite components seeking applications in hot sections of next-generation advanced aero-engines. The cracks initiated and developed in EBCs owing to various reasons during service greatly undermine their lifespans. To address this problem, in this work, silicon carbide (SiC) in the forms of particles and whiskers with various amounts have been introduced to ytterbium disilicate (Yb2Si2O7), the mainstream EBC topcoat materials, so as to gain some self-healing potential. The results reveal that, the SiC inclusions in Yb2Si2O7 in the presence of ytterbium monosilicate (Yb2SiO5) can trigger the following reactions. Specifically, SiC self-healing agents are oxidized to form viscous SiO2, which actively reacts with Yb2SiO5 upon encountering it, forming Yb2Si2O7. This has brought twofold beneficial effects including ① silicon supplementation of disilicate topcoat, whose silicon element tends to be “dragged out” by water vapor, leading to the deterioration of thermal mismatch; as well as ② crack self-healing resulting from the volume expansion induced by the above reactions. Then the two aspects of self-healing agents, namely the “promptness” and “sustainability,” have been discussed in detail. The former is unveiled to be more pertinent to the repairing of large cracks, whilst the latter is more relevant to the self-healing of tiny cracks at initiation or early stage of propagation. The current work sheds some lights on the design and development of more durable and robust EBCs with self-healing capability.  相似文献   

7.
《Ceramics International》2016,42(14):15203-15208
In this study, ytterbium monosilicate (Yb2SiO5)-added sintered mullite ceramics are prepared as candidate materials for environmental barrier coatings (EBCs). The effect of adding Yb2SiO5 on the physical and mechanical properties of the sintered mullite ceramics is investigated. The Yb2O3–SiO2–Al2O3 ternary phase diagram indicates that adding Yb2SiO5 to the mullite goes beyond simply mixing; instead, liquid sintering occurs. Therefore, when we add Yb2SiO5 to the mullite, the sintered body possesses a denser microstructure and faster densification rate than does pure mullite. The density rapidly increases with the addition of 6 wt% Yb2SiO5 in the mullite, and almost full densifications are achieved with the addition of 12 wt% and 18 wt% Yb2SiO5. In this study, mullite ceramic that contains 12 wt% Yb2SiO5 exhibits the smallest plastic deformation and the highest elastic modulus among ceramics containing 6, 12, and 18 wt% Yb2SiO5, according to Hertzian indentation results. The results suggest that 12 wt% Yb2SiO5-doped mullite may be expected to act as a potential EBC material based on its excellent elastic properties, dense microstructure, and appropriate coefficient of thermal expansion.  相似文献   

8.
《应用陶瓷进展》2013,112(4):190-192
In situ Ti2AlC/TiAl composite was first fabricated by reactive hot-pressing technique at low temperature of 1150°C for 2?h using Ti3AlC2 and Ti–Al alloy powders. The composite with fine-grained structure consisted of TiAl, Ti3Al and Ti2AlC phases. The Vickers hardness, flexural strength and fracture toughness of the Ti2AlC/TiAl composite reached 5.2?GPa, 937.7?MPa and 7.7?MPa?m1/2, respectively. The action mechanism for the composite was mainly attributed to the grain refinement, the uniform distribution of the dispersed Ti2AlC particles, transgranular cracking, crack deflection, crack bridging and pull-out of Ti2AlC.  相似文献   

9.
A new tri‐layer Yb2SiO5/Yb2Si2O7/Si coating was fabricated on SiC, C/SiC, and SiC/SiC substrates, respectively, using atmospheric plasma spray (APS) technique. All coated samples were subjected to thermal shock test at 1350°C. The evolution of phase composition and microstructure and thermo‐mechanical properties of those samples before and after thermal shock test were characterized. Results showed that adhesion between all the 3 layers and substrates appeared good. After thermal shock tests, through microcracks which penetrated the Yb2SiO5 top layer were mostly halted at the Yb2SiO5‐Yb2Si2O7 interface and no thermal growth oxide (TGO) was formed after 40‐50 quenching cycles, implying the excellent crack propagation resistance of the environmental barrier coating (EBC) system. Transmission electron microscopy analysis confirmed that twinnings and dislocations were the main mechanisms of plastic deformation of the Yb2Si2O7 coating, which might have positive effects on crack propagation resistance. The thermal shock behaviors were clarified based on thermal stresses combined with thermal expansion behaviors and elastic modulus analysis. This study provides a strategy for designing EBC systems with excellent crack propagation resistance.  相似文献   

10.
《Ceramics International》2016,42(12):13586-13592
TiAl matrix composites, reinforced with varying Ti2AlC content levels, were synthesized by vacuum arc melting by use of Ti, Al and graphite powders as raw materials. The effects of varied Ti2AlC content from 0 to 100 mol% on the phases, microstructures, fracture behaviors and mechanical properties of resulting products were analyzed. Phase transformation was characterized by X-ray diffraction (XRD) and microstructures were measured by scanning electron microscopy (SEM), equipped with energy-dispersive spectroscopy (EDS). Results show that the products are composed primarily of TiAl, Ti3Al, Ti2AlC and small amounts of TiC. The unreacted TiC phase is due mainly to evaporation of Al. The Vickers hardness value of TiAl matrix composite was increased by adding Ti2AlC, while the TiAl/Ti2AlC composite fracture behaviors were improved in terms of crack deflection, trans-lamellar cracking and extraction of carbide reinforcements.  相似文献   

11.
High pure Ti2Al(1?x)SnxC (x = 0‐1) powders were synthesized using Ti, Al, Sn, and TiC powders as raw materials by pressureless sintering method. The influence of sintering temperature and raw material ratio on the purity of Ti2AlC and Ti2Al0.8Sn0.2C powders were investigated. The results show that pure Ti2AlC and Ti2Al0.8Sn0.2C powders were obtained from the mixed raw materials ratio of Ti:1.1Al:0.9TiC and Ti:0.9Al:0.2Sn:0.9TiC at 1450°C, respectively. Subsequently, fully dense Ti2AlC and Ti2Al0.8Sn0.2C bulks were prepared using mechanically alloying and hot pressed sintering method. The Vickers hardness of Ti2AlC and Ti2Al0.8Sn0.2C approaches approximately about 6 GPa and 4 GPa, the flexural strength was measured to be 650 ± 36 MPa and 521 ± 33 MPa, respectively. Microstructural analysis reveals that grain delamination, kink bands, and crack deflection occurred around the indentation area and at the fracture surface.  相似文献   

12.
《Ceramics International》2020,46(13):21328-21335
Plasma spraying of multicomponent materials produces shifts in coating composition associated with differential vaporization of constituent elements within the strong thermal gradients of the process. This effect is quite noticeable in rare-earth silicates which are now widely being employed as Environmental Barrier Coatings (EBCs) for SiC based ceramic components of turbine engines. Of particular interest is the preferential volatilization of SiO2 during thermal plasma spraying Yb2Si2O7 (ytterbium disilicate) coatings which leads to the deviation from stoichiometry of the desired disilicate composition resulting in a mixed phase coating consisting of Yb2Si2O7 plus Yb2SiO5 (ytterbium monosilicate). Recent work has shown that presence of monosilicate can be beneficial as its evolution from amorphous, metastable to stable crystalline phase can lead to crack healing during high temperature exposure, however, careful control of the chemistry and architecture may be needed. In this work a 50/50 mol% Yb2Si2O7–Yb2SiO5 composite coating has been targeted through in situ decomposition during plasma spray from stoichiometric Yb2Si2O7 powder. The as sprayed amorphous coating reverts to crystalline upon thermal treatment passing through a metastable state identified by XRD and Raman spectroscopy. The transition to the final stable phases results in a mixed phase coating comprising of 46/54 mol% Yb2Si2O7–Yb2SiO5 composite that is thermo-mechanically stable with the underlying bond coated silicon coated SiC substrate.  相似文献   

13.
Reactive sintering of 8Ti:Al4C3:C powder mixtures to form the ternary carbide Ti2AlC is studied in the temperature range 570–1400 °C. After sintering at 1400 °C for 1 h, only the MAX phase Ti2AlC and some TiC are produced. A series of intermediate phases, such as TiC, Ti3Al, Ti3AlC are detected during the reactive sintering process. From X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations, a reaction path is proposed for the intermediate phases and Ti2AlC formation. Results show that reaction kinetics may play an important role in the understanding of the reaction mechanisms.  相似文献   

14.
The oxidation induced crack healing behavior of pre-cracked Nb2AlC particle loaded ZrO2-matrix composites was explored by annealing in air at 1200?°C for short periods of 10 and 20?min. Composites loaded with 0, 6.5, 13, and 19.5?vol% Nb2AlC powder dispersed in 3Y-TZP matrix powder were manufactured by spark plasma sintering (SPS) at 1300?°C. Semi-elliptical artificial surface cracks with a length exceeding 220?µm were produced by Vickers indentation. The modulus of rupture of virgin, indented and annealed samples was measured in three-point bending mode. Compared to single phase 3Y-TZP strength recovery of the Nb2AlC loaded composite upon annealing at 1200?°C in air is accelerated and reaches >?60% of the initial strength after a short healing period of 10?min only. A semi-empirical oxidation cohesive zone healing model was derived which describes the crack microstructure evolution as a combined effect of 3Y-TZP-matrix healing superimposed by Nb2AlC particle oxidation induced healing.  相似文献   

15.
《Ceramics International》2022,48(18):26618-26628
Oxidation and hot corrosion behaviours of Ti3SiC2, Ti2AlC and Cr2AlC at 750 °C were investigated in this work. Ti3SiC2 and Ti2AlC showed a linear increase in mass gain and a relatively poor oxidation resistance. This might be attributed to the porous TiO2 scale. A dense α-Al2O3 layer was formed during the oxidation test. Cr2AlC exhibited the best oxidation resistance. This dense oxide scale can effectively isolate the substrate from contact with oxygen leading to excellent oxidation resistance. In contrast to the oxidation test, Ti3SiC2 and Ti2AlC showed relatively better resistance to hot corrosion, while Cr2AlC showed inferior resistance to NaCl introduced hot corrosion. The hot corrosion mechanism of the MAX phases was analyzed. Due to the formation of Na2TiO3, Ti containing MAX phases showed a continuous increase in the mass gain. The corrosion products of Cr2AlC were Al2O3, Cr2O3 and Na2CrO4. However, due to the volatilization of Na2CrO4, Cr2AlC showed a mass loss during the hot corrosion test. The chemical reaction process of the MAX phase was also analyzed.  相似文献   

16.
A highly attractive self-healing material would be one which combines excellent mechanical properties with a multiple healing capability. Self-healing ceramics have been studied for over 40 years to obtain some performance recovery and to prevent material failure during service, but so far only materials with the capability of single healing event per damage site have been realized. Here we report on a self-healing Ti2AlC ceramic capable of repeatedly repairing damage events. The Ti2AlC ceramic achieves at least seven healing cycles after repeated cracking at a given location. The main healing mechanism at high temperature is the filling of the cracks by the formation well adhering α-Al2O3 and the presence of some rutile TiO2. For healed samples, the flexural strength returned or even slightly exceeded the virginal strength. The fracture toughness recovery has been quantified for multiple healing cycles.  相似文献   

17.
Herein we study the infiltration behavior of Ti and Cu fillers into a Ti2AlC/Ti3AlC2MAX phase composites using a TIG-brazing process. The microstructures of the interfaces were investigated by scanning electron microscopy and energy dispersive spectrometry. When Ti2AlC/Ti3AlC2 comes into contact with molten Ti, it starts decomposing into TiCx, a Ti-richandTi3AlC; when in contact with molten Cu, the resulting phases are Ti2Al(Cu)C, Cu(Al), AlCu2Ti and TiC. In the presence of Cu at approximately 1630 °C, a defective Ti2Al(Cu)C phase was formed having a P63/mmc structure. Ti3AlC2 MAX phase was completely decomposed in presence of Cu or Ti filler-materials. The decomposition of Ti2AlC to Ti3AlC2 was observed in the heat-affected zone of the composite. Notably, no cracks were observed during TIG-brazing of Ti2AlC/Ti3AlC2 composite with Ti or Cu filler materials.  相似文献   

18.
The present investigation focuses on the effect of Cr2AlC MAX phase addition on erosion and oxidation-induced crack healing behavior of Ni–Mo–Al alloy. For this, Ni–Mo–Al and 20 wt% Cr2AlC-blended Ni–Mo–Al powders were coated by Air Plasma Spray (APS). For oxidation-induced crack healing studies, the samples were heat treated at 500, 800, and 1100°C in the air for 5 hours. The heat-treated samples were analyzed by X-Ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS) for the phases, morphology, and composition. Erosion behavior studies were carried out at 30, 250, 500, 800, and 1000°C temperatures. The average hardness was obtained to be 400 ± 10 HV for Ni–Mo–Al coating and 580 ± 10 HV for 20 wt% Cr2AlC-blended Ni–Mo–Al coating. The addition of Cr2AlC MAX into Ni–Mo–Al matrix reduces the overall erosion rate and improved the crack healing ability. This was attributed to the presence of in-situ-formed Cr7C3 and Al2O3 phases.  相似文献   

19.
The processing and characterization of laminates based on Ti2AlC MAX phase, as matrix, and triaxial alumina braids, as reinforcing phase, are presented. Ti2AlC powders with a mean particle size below 1 µm are synthesized, while commercial 3M Nextel 610 alumina fibers are braided in a three-stage process consisting of spooling, braiding with an angle of 0° and ±60° and the separation to single-layer fabric. The laminates are processed by layer-by-layer stacking, where 3 two-dimensional alumina braids are interleaved between Ti2AlC layers, followed by full densification using a Field-Assisted Sintering Technology/Spark Plasma Sintering. The multifunctional response of the laminates, as well as for the monolithic Ti2AlC, is evaluated, in particular, the thermal and electrical conductivity, the oxidation resistance, and the mechanical response. The laminates exhibit an anisotropic thermal and electrical behavior, and an excellent oxidation resistance at 1200℃ in air for a week. A relatively lower characteristic biaxial strength and Weibull modulus (i.e., σ0 = 590 MPa and m = 9) for the laminate compared to the high values measured in the monolithic Ti2AlC (i.e., σ0 = 790 MPa and m = 29) indicates the need but also the potential of optimizing MAX-phase layered structures for multifunctional performance.  相似文献   

20.
This work reports the oxidation and crack healing behavior of a fine‐grained (~2 μm) Cr2AlC MAX phase ceramic. The oxidation behavior was investigated in the temperature range 900°C–1200°C for times up to 100 h. The material showed a good oxidation resistance, owing to the formation of a dense and thin α‐Al2O3 layer. The microstructure, composition and thickness of the oxide scale were characterized. Its oxidative crack healing behavior as a function of temperature, healing time, and initial crack size was studied systematically. The material showed excellent healing behavior. The main crack healing mechanism is the filling of the crack by oxides well adhering to the crack faces. The crack geometry before and after healing was characterized by X‐ray tomography. Three‐point bend tests showed the dependence of strength recovery at 1100°C as a function of initial crack length and healing time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号