首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   23篇
  国内免费   2篇
工业技术   485篇
  2023年   4篇
  2022年   9篇
  2021年   18篇
  2020年   25篇
  2019年   21篇
  2018年   25篇
  2017年   26篇
  2016年   21篇
  2015年   12篇
  2014年   32篇
  2013年   57篇
  2012年   39篇
  2011年   31篇
  2010年   31篇
  2009年   25篇
  2008年   18篇
  2007年   20篇
  2006年   15篇
  2005年   7篇
  2004年   12篇
  2003年   3篇
  2002年   4篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
排序方式: 共有485条查询结果,搜索用时 78 毫秒
1.
Wireless Personal Communications - The paper addresses the narrowband direction of arrival estimation problem in the presence of multiplicative noise, namely, the local scatterers affect the...  相似文献   
2.
The effects of three types of salt including NaF, KCl, and NaCl on the properties of NiFe2O4 nanoparticles using salt-assisted solution combustion synthesis (SSCS) have been investigated. The synthesized powders were evaluated by SEM, TEM, FTIR, XRD, and VSM analysis. Also, the specific surface area (SSA), as well as size distribution and volume of the porosities of NiFe2O4 powders were determined by the BET apparatus. The visual observations showed that the intensity and time of combustion synthesis of nanoparticles have been severely influenced by the type of salt. The highest crystallinity was observed in the synthesized powder using NaCl. The SSA has also been correlated completely to the type of salt. The quantities of SSA was achieved about 91.62, 64.88, and 47.22 m2g-1 for the powders synthesized by KCl, NaCl, and NaF respectively. Although the magnetic hysteresis loops showed the soft ferromagnetic behavior of the NiFe2O4 nanoparticles in all conditions, KCl salt could produce the particles with the least coercivity and remanent magnetization. Based on the present study, the salt type is a key parameter in the SSCS process for the preparation of spinel ferrites. Thermodynamic evaluation also showed that the melting point and heat capacity are important parameters for the proper selection of the salt.  相似文献   
3.
4.
While carbon nanotubes are known as efficient adsorbents for removal of a number of contaminants from water, the possibility of their leaching into drinking water has prevented their application in water treatment. In this study, single walled carbon nanotubes (SWCNT) were sandwiched between two electrospun nanofibre membranes (ENM). The relatively small pore size of the ENM prevented the mechanically entangled nanotubes from passing through and contaminating the water. The performance of the SWCNT-ENM was evaluated in a lab-scale setup for the removal of PPCPs. For this purpose, a feed solution spiked with known concentrations of six PPCPs was passed through the membrane system. The target substances included acetaminophen (ACT), bezafibrate (BZF), iopromide (IOP), diclofenac (DCF), carbamazepine (CBZ), and sulphamethoxazole (SMX). The same test was also conducted using a single contaminant (ACT). Results demonstrated a decrease in the overall percent removal of PPCPs as feed flow rate and PPCP concentration increased. For multi-component feeds containing equal amounts of the aforementioned PPCPs, the overall percent removal decreased from 90.8% to 71.0% when increasing the feed concentration from 30 to 600 μg/L. Experiments using sandwiched powdered activated carbon (PAC) showed that the dynamic adsorption capacity of PPCPs by SWCNT-ENM was higher than that of PAC-ENM, and remained unaffected by the feed composition. In addition, the high porosity of this novel membrane allowed for flow of water with low resistance such that the trans-membrane pressure was found to be as low as 4 kPa at a pure water flux of 330 L/m2h.  相似文献   
5.
High-performance polymers for water desalination were designed. A novel polysulfone was prepared via reaction between a new synthesized pyridine-based diol and bis(4-fluorophenyl) sulfone. Also a series of disulfonated copolymers with sulfonation content of 20–50 wt% were prepared to compare the hydrophilicity with the pristine polymer. The generated membranes were characterized by microscopic, mechanical, and thermal methods, and the influence of sulfonation degree on hydrophilicity, water flux, and salt rejection was followed. Water flux of sulfonated membranes was increased compare to pristine membrane as sulfonation increased, while the salt rejection decreased. Optimum application performance was obtained for membrane with 30 wt% sulfonation content. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48568.  相似文献   
6.
Telecommunication Systems - Along with the widespread use of smartphones, activity recognition using embedded inertial sensors has intrigued researchers. The learning and employing activity...  相似文献   
7.
Vanadium nitride(VN) was deposited by DC-sputtering on a vertically aligned carbon nanotube(CNTs)template for the purpose of nano-structuration. This led to the fabrication of hierarchically composite electrodes consisting of porous and nanostructured VN grown on vertically aligned CNTs in a nano-treelike configuration for micro-supercapacitor application. The electrodes show excellent performance with an areal capacitance as high as 37.5 m F cm~(-2) at a scan rate of 2 mV s~(-1) in a 0.5 MK_2SO_4 mild electrolyte solution. Furthermore, the capacitance decay was only 15% after 20,000 consecutive cycles. Moreover,the capacitance was found to increase with VN deposit thickness. The X-ray photoelectron spectroscopy analyses of the electrodes before and after cycling suggest that the oxide layers that form at the VN surface is the responsible for the redox energy storage in this material. Such electrodes can compete with other transition metal nitride based electrodes for micro-supercapacitors.  相似文献   
8.
Iranian Polymer Journal - Gas separation membranes with enhanced performance were developed by the introduction of nanosized palladium particles. In this study, gas separation performance of...  相似文献   
9.
The Journal of Supercomputing - Internet of Things (IoT), as an emerging technology, describes a smart world that enables objects to interact with each other and with end-users through developed...  相似文献   
10.
In this paper, two new complementary metal oxide semiconductor (CMOS) realizations for second-generation voltage conveyor (VCII) are presented. The first proposed VCII has a very simple structure employing only six transistors. The second proposed VCII employs 11 transistors, and none of the transistors at both proposed circuits suffer from the body effect. Small-signal analysis, parasitic elements, and input-referred noise of the proposed VCIIs are given. Moreover, a new active element called voltage controlled second-generation voltage conveyor (VC-VCII) is proposed as dual element of current controlled second-generation current conveyor (CCCII) active element. Its parasitic resistance at the Y terminal can be controlled electronically. Two presented CMOS structures of VCII are worked as VC-VCII with slight modification. Proposed circuits are simulated in Cadence Analog environment using TSMC 0.18-μm process parameters with ±0.9-V supply voltages. Both CMOS structures occupy a small chip area of 276.8 and 271 μm2, respectively. The bandwidth of the current follower stage of the proposed VCIIs is found as 794 MHz, whereas the bandwidth of the voltage follower stage for the first and second proposed VCIIs is found as 2.57 and 1.92 GHz, respectively. As an application example, voltage-mode first-order low-pass filter has been given with its tunable gain by using VC-VCII.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号