首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A charged surface modifying macromolecule (cSMM) was synthesized, characterized by FT-IR spectroscopy and blended into the casting solution of cellulose acetate (CA) to prepare surface modified UF membranes by phase inversion technique. With an increasing cSMM additive content from 1 to 4 wt%, pure water flux (PWF) and water content (WC) were increases whereas the hydraulic resistance decreases. Surface characteristic study reveals that the surface hydrophilicity increased in cSMM modified CA membranes. The pore size and surface porosity of the 4 wt% cSMM blend CA membranes increases to 41.26 Å and 0.015%, respectively. Similarly, the molecular weight cut-off (MWCO) of the membranes ranged from 20 to 45 kDa, depending on the various compositions of the prepared membranes. Lower flux decline rate (47.2%) and higher flux recovery ratio (FRR) (89.0%), exhibited by 4 wt% cSMM blend membranes demonstrated its fouling resistant characteristic compared to pristine CA membrane.  相似文献   

2.
A series of cellulose triacetate/Ludox-silica nancomposite pervaporation membranes was successfully prepared via solution casting, aiming to improve the performance of cellulose triacetate membranes for desalination. The fabricated nanocomposite membranes were characterized to study the membrane morphology, chemical composition, mechanical properties, and surface hydrophilicity. Furthermore, the desalination performance was investigated as a function of silica (SiO2) loading (ranging from 1 to 4 wt%) and feed concentration at 30 and 60 g/L of sodium chloride (NaCl). Pervaporation experiments showed that incorporating 4 wt% SiO2 into a cellulose triacetate (CTA) membrane increased the water flux by a factor 2.5 compared with pristine CTA (from 2.2 to 6.1 kg m−2 h−1) for a 30 g/L NaCl feed solution at 70°C, while the salt rejection remained above 99%. The CTA/4 wt% SiO2 membrane was found to have only 21% flux reduction when tested with a 60 g/L NaCl feed solution, without changes in membrane selectivity. This suggests that the developed CTA/Ludox-SiO2 nanocomposite pervaporation membrane is suitable for desalination.  相似文献   

3.
In this study, a novel basalt embedded fiber membranes was prepared by the electrospinning method. The effects of the feed rate, voltage, tip to collector distance, and the basalt content on the prepared composite fiber membranes were investigated and optimized using the response surface method. Four models were built to compare the fibers in terms of deionized water flux (DWF), activated sludge flux, chemical oxygen demand (COD) removal, and porosity of fiber membranes. All the developed models were significant and adequately precise. The maximum flux of DWF was obtained when the voltage was 17.25 kV, the tip to collector distance of 19 cm, and a basalt content in polymer of 1.25%. COD removal decreased at higher voltage values as the feed rate increased. The porosity, pore size, and the contact angle values decreased for basalt embedded fiber membrane. The increases in the basalt percentage in polymer increased the hydrophilicity of the fiber. The flux decline for the basalt embedded fiber membrane was compared with the pristine fiber membrane. The permeate fluxes of pristine and basalt embedded fiber membranes were 42.3 and 59.6 L/m2/h, respectively. The biofouling performances of pristine and basalt embedded fiber membranes were also examined. Irreversible fouling decreased from 42.9% to 8.0%, and reversible fouling increased from 56.5% to 91.1% after modification of the membrane with basalt powder. Scanning electron microscopy with energy dispersive X-ray analysis (SEM–EDX) analysis showed that basalt powder was successfully embedded into polyether sulfone polymer.  相似文献   

4.
Polyethersulfone (PES) nanofiltration (NF) membranes were prepared by blending of synthesized hydrophilic adipate ferroxane nanoparticles (AFNPs) as a novel multifunctional nanofiller via the phase inversion method. The water contact angle measurement indicated the higher hydrophilicity of the NF membranes. The water flux of the membranes improved significantly after the addition of AFNPs, from 10.4 to 32.2 kg/m2h. Antifouling characteristics of AFNPs/PES membranes were improved by increased hydrophilicity and decreased membrane surface roughness. The 0.6 wt% AFNPs/PES membrane exhibited the highest FRR (96%) and the lowest irreversible fouling resistance (6%). The nanofiltration performance of the prepared membranes was evaluated by dye removal and salt retention. The results proved the high dye removal capability of modified membranes (98% rejection) compared with the unfilled PES membrane (89% rejection). The salt retention sequence for membrane with 0.2 wt% of nanoparticles was Na2SO4 (70%)>MgSO4 (60%)>NaCl (18%).  相似文献   

5.
In the present study, a simple, inexpensive, nontoxic, and environmentally friendly polyethylene glycol (PEG) polymer was used to enhance the hydrophilicity of the forward osmosis (FO) membrane using various PEG concentrations as a pore forming agent in the casting solution of polyethersulfone/polysulfone (PES/PSF) blend membranes. A nonwoven PES/PSF FO blend membrane was fabricated via the immersion precipitation phase inversion technique. The membrane dope solution was cast on polyethylene terephthalate (PET) nonwoven fabric. The results revealed that PEG is a pore forming agent and that adding PEG promotes membrane hydrophilicity. The membrane with 1 wt% PEG (PEG1) had about 27% lower contact angle than the pristine blend membrane. The PEG1 membrane has less tortuosity (which reduces from 3.4–2.73), resulting in a smaller structure parameter (S value) of 277 μm, due to the presence of open pores on the bottom surface structure, which results in diminished ICP. Using 1 M NaCl as the draw solution and distilled water as the feed solution, the PEG1 membrane exhibited higher water flux (136 L m−2 h−1) and lower reverse salt flux (1.94 g m−2 h−1). Also, the selectivity of the membrane, specific reverse salt flux, (Js/Jw) showed lower values (0.014 g/L). Actually, the PEG1 membrane has a 34.6% higher water flux than the commercial nonwoven-cellulose triacetate (NW-CTA) membrane. By means of varied concentrations of NaCl salt solution (0.6, 1, 1.5, and 2 M), the membrane with 1 wt% PEG showed improved FO separation performance with permeate water fluxes of 108, 136, 142, and 163 L m−2 h−1. In this work, we extend a promising gate for designing fast water flux PES/PSF/PEG FO blend membranes for water desalination.  相似文献   

6.
Modification of polymeric membrane materials by incorporation of hydrophilicity results in membranes with low fouling behavior and high flux. Hence, Polysulfone was functionalized by sulfonation and ultrafiltration membranes were prepared based on sulfonated polysulfone and cellulose acetate in various blend compositions. Polyethyleneglycol 600 was employed as a nonsolvent additive in various concentrations to the casting solution to improve the ultrafiltration performance of the resulting membranes. The total polymer concentration, cellulose acetate, and sulfonated polysulfone polymer blend composition, additive concentration, and its compatibility with polymer blends were optimized. The membranes prepared were characterized in terms of compaction, pure water flux, membrane resistance, and water content. The compaction takes place within 3–4 h for all the membranes. The pure water flux is determined largely by the composition of sulfonated polysulfone and concentration of additive. Membrane resistance is inversely proportional to pure water flux, and water content is proportional to pure water flux for all the membranes. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1749–1761, 2002  相似文献   

7.
Sulfonated polyphenylsulfone porous asymmetric membranes, S‐PPSU with different sulfonation degrees, 21, 33, 50 wt %, were prepared by phase inversion. Two different coagulation baths were explored for asymmetric membrane preparation: acetone/isopropanol and acetic acid (AA)‐NaHCO3/isopropanol. The latter bath allows better morphology control for the nucleation and pore formation of the membrane. Scanning electron microscopy of membranes shows that pore interconnectivity is improved, when the mixture of AA‐NaHCO3/isopropanol was used for asymmetric S‐PPSU ultrafiltration membranes preparation. S‐PPSU asymmetric membranes show an increasing hydrophilicity with increasing sulfonation degree. Asymmetric membrane antifouling properties improve as the concentration of sulfonic groups increases in the membrane showing twice the flux recovery ratio and lower BSA protein absorption in static and dynamic flux tests. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44502.  相似文献   

8.
In forward osmosis, internal concentration polarization is related to the properties (e.g., hydrophilicity, porosity, structural resistant) of membrane support layer. In this work, polyethylene glycol with a low molecular weight of 400 Da was introduced as a support layer additive during the fabrication of thin-film polyamide-polysulfone composite forward osmosis membranes. The forward osmosis performances including water flux and reverse salt flux of the membranes were tested in the mode of AL-FS where the membrane active layer faced toward feed solution. Results showed that the addition of polyethylene glycol would reduce internal concentration polarization and improve membrane performance in forward osmosis by means of enhancing membrane hydrophilicity and changing pore morphologies of membrane support layer. The membrane prepared with 6 wt.% polyethylene glycol was found to exhibit the highest water flux of 47.4 Lm?2h?1 with a reverse salt flux of 7.6 gm?2h?1 when using DI water and 2.0 M NaCl as the feed and the draw solution, respectively, indicating an optimal polyethylene glycol dosage of 6 wt.% in this work.  相似文献   

9.
To improve the performance of nylon 4 membranes, this study attempts to utilize chemical initiation which induces different hydrophilicities vinyl monomers grafted onto nylon 4 membranes. Sodium styrene sulfonate, chloromethyl styrene, styrene, and glycidyl methacrylate were used as grafting monomers. The factors that affect the degree of grafting considered were chemical initiators, pH values, kinds and concentrations of monomers, reaction time, and temperatures. The mechanical strength and the transport properties of these chemical-initiated grafted nylon 4 membranes were also investigated. Both the water flux and the salt rejection of sodium styrene sulfonated-grafted membrane were increased significantly, compared to our previous paper,1 and the casein rejections of all of the four grafted nylon 4 membranes studied exceeded 90%. The quaternized nylon 4-g-poly(chloromethyl styrene) membranes were prepared and possessed high water uptake behavior and high transfer number (0.99) for electrodialysis. The sulfonating process was also applied to improve the hydrophilicity of nylon 4-g-poly(glycidyl methacrylate) membrane so that the water flux and the salt rejection were both increased.  相似文献   

10.
In this study, surfactant‐treated carbon nanotubes (CNTs) were incorporated into polybenzimidazole (PBI) matrix to prepare the PBI/CNT composite membranes with CNT content in the range of 0 to 15 wt %. The composite membranes were fabricated by spin‐coating. The membrane morphology, mechanical property, and water and salt transport properties were investigated to characterize the additive effect of CNTs. The tensile strength of all the PBI/CNT composite membranes was lower than that of pristine PBI membrane, indicating the weak interaction between CNT and PBI. In addition, water flux increased without reducing the salt rejection when CNTs were homogeneously dispersed in the PBI matrix at a less than 7.5 wt % content. On the other hand, at 10 wt % and higher CNT content, submicro‐scaled cellular structure was formed, and both the water flux and salt rejection decreased. The well‐dispersed CNTs in the PBI matrix via weak interaction preferentially improve the water permeability by 1.7 times without depressing the salt rejection. The incorporation of well‐dispersed CNTs in polymer matrix provides a promising and facile option for improvement in the water transport properties through the polymeric semipermeable membranes with intrinsically low water permeability such as PBI. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45875.  相似文献   

11.
Membrane fouling problem is now limiting the rapid development of membrane technology. A newly synthesized cationic polyionic liquid (PIL) [P(PEGMA-co-BVIm-Br)] was blended with poly(vinylidene fluoride) (PVDF) to prepare antifouling PVDF membranes. The PVDF/P(PEGMA-co-BVIm-Br) exhibited an increased surface hydrophilicity, the water contact angle was reduced from 77.8° (pristine PVDF) to 57.9°. More porous membrane structure was obtained by adding PIL into the blending polymers, as high as 478.0 L/m2·h of pure water flux was detected for the blend PVDF membrane in comparison with pristine PVDF (17.2 L/m2·h). Blending of the cationic PIL with PVDF gave a more positive surface charge than pristine PVDF membrane. Blend membranes showed very high rejection rate (99.1%) and flux recovery rate (FRR, 83.0%) to the positive bovine serum albumin (BSA), due to the electrostatic repulsion between the membrane surface and proteins. After three repeated filtration cycles of positive BSA, the blend PVDF membranes demonstrated excellent antifouling performance, the permeation flux of the membranes was recovered very well after a simple deionized water washing, and as high as 70% of FRR was obtained, the water flux was maintained at above 350 L/m2·h. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48878.  相似文献   

12.
This research reported developing a polyethersulfone (PES) membrane using covalent organic frameworks (COFs) nanoparticle with a mean dimension of 30 nm. The SNW-1 (Schiff-based network) COF was synthesized using precursors of melamine and terephthalic acid and then characterized by XRD, SEM, TEM, and FTIR analyses. The influence of different loadings of the COF was evaluated on the permeability, antifouling behavior and dye/salt rejection. The addition of SNW-1 caused a reduction in surface roughness and an improvement in hydrophilicity of the nanocomposite membranes, which improved their flux and fouling resistance considerably. The improvement of water flux, 2.6 times, was observed by adding 0.5 wt% COF to the membrane matrix. The 0.5 wt% COF membrane presented the best water permeability, 38.9 L/m2 h bar BSA solution flux, dye rejection of 98.7% for Reactive Green 19 and 62.6% for Reactive yellow 39, 52.9% Na2SO4 and 24.5% NaCl salt rejections. Zeta potential and salt rejection trend indicated a negative surface charge on the nanocomposite membrane. Fouling experiments by BSA protein solution exhibited that the FRR reached 88.9% for 2 wt% COF membrane. Thus, employing SNW-1 into PES matrix resulted in a promising nanofiltration membrane for dye separation and moderate salt separation with suitable antifouling properties.  相似文献   

13.
The blend polyethersulfone (PES)/cellulose acetate (CA) flat‐sheet microporous membranes were prepared by reverse thermally induced phase separation (RTIPS) process. The effects of CA content and coagulation bath temperature on membrane structures and properties were investigated in terms of membrane morphology, water contact angle, permeation performance, and mechanical properties. The cloud point results indicated that the cloud point decreased with the increasing content of CA. When the coagulation bath temperature was lower than the cloud point, the membrane formation process underwent nonsolvent induced phase separation (NIPS) process and dense skin layer and finger‐like structure were formed in membranes. These membranes had lower pure water flux and poor mechanical properties. But when the coagulation bath temperature was higher than the cloud point, the membrane formation process underwent RTIPS process. The porous top surface as well as porous cross‐section of the membranes were formed. Therefore, high pure water flux and good mechanical properties were obtained. The contact angles results indicated that the hydrophilicity of the prepared membranes improved obviously with the addition of CA. When the content of CA was 0.5 wt% and the membrane formation temperature was 323K, the PES/CA microporous membrane which was prepared via the RTIPS process displayed a optimal permeability of the pure water flux of 816 L m?2 h?1 and the BSA rejection rate of 49.5%, which showed an increase of 48.9% and 23.6% than that of pure PES membrane, respectively. Moreover, the mechanical strengths of the membranes obtained by RTIPS process were better than those membranes prepared by NIPS process. POLYM. ENG. SCI., 58:180–191, 2018. © 2017 Society of Plastics Engineers  相似文献   

14.
In this study, asymmetric flat‐sheet polyethersulfone (PES) nanofiltration (NF) membranes were prepared via immersion precipitation phase inversion with the addition of polyvinylpyrrolidone (PVP). The effects of PVP with the molecular weights (MW) from 17 to 1400 kDa and the concentration from 0 to 3.0 wt % on the morphologies and performances of PES membranes were systematically studied. The prepared membranes were characterized by SEM, AFM, ATR‐FTIR, contact angle, membrane porosity, the water flux, and the rejection measurement. The results indicated that the porosity and the hydrophilicity of PES NF membrane increased with increasing PVP concentration, and the hydrophilicity of PES NF membrane also improved with increasing PVP MW. The enhancements of the porosity and hydrophilicity resulted in the higher water flux of PES NF membrane. The rejection of Bordeaux S (MW 604.48 Da) for the prepared PES membrane was increased to above 90% with the low PVP concentration, but it turned to decrease remarkably when the PVP concentration reached to a critical value which related to PVP MW. It was concluded that the addition of a small amount of PVP could significantly increase the permeability of PES NF membrane and maintain its rejection of Bordeaux S above 90%. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43769.  相似文献   

15.
In this study, tetraethoxysilane (TEOS)-functionalized Na-bentonite incorporated into polysulfone/polyethylenimine (PSF/PEI) membranes were fabricated by phase inversion method for the efficient removal of methylene blue dye. For the preparation of PSF/PEI nanocomposite membranes, silane-functionalized Na-bentonite and pure Na-bentonite were used at three different concentrations (0.5, 1, and 2 wt%). The prepared membranes were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, porosity, hydrophilicity, and water permeability measurements. Antifouling behaviors and methylene blue dye rejections of the PSF/PEI nanocomposite membranes were also tested. The obtained results showed that the addition of pure Na-bentonite and silane-functionalized Na-bentonite both increased the water permeability of the membranes. The PSF/PEI membrane containing 2 wt% silane-functionalized Na-bentonite showed the highest water flux of 105 L m−2 h−1, while the lowest water flux of 1.2 L m−2 h−1 was recorded for pure PSF membrane. Filtration results demonstrated that the antifouling capacity was significantly increased due to the negatively charged surface of the newly generated silane-functionalized Na-bentonite PSF/PEI membranes. In summary, TEOS-functionalized Na-bentonite can be used to fabricate PSF/PEI nanocomposite membranes with effective filtration ability, antifouling capacity with lower decay ratio, higher flux recovery ratio, and 99% methylene blue dye removal performance.  相似文献   

16.
Hydrophilic polyvinyl alcohol membranes, modified by lithium bromide, were prepared with glutaraldehyde as a crosslinking reagent. The membranes were investigated for the pervaporation dehydration of a water–isopropyl systems. The effect of the feed temperature on permeation flux and membrane selectivity was studied. The characterization of modified membranes was performed using Fourier transform infrared spectroscopy (FT‐IR), differential scanning calorimeter (DSC) and X‐ray diffraction. It was observed that the crystallinity of membranes increased as lithium bromide was added to the polymer. High performance liquid chromatography (HPLC) was used to analyze water content and isopropyl alcohol in the feed and permeate samples The pervaporation tests also confirmed an enhancement in water permeability through adding LiBr to the polymer, because of the high hydrophilic properties of this salt. According to pervaporation experiments conducted at 50°C, the water flux increased from 0.1049 kg/ m2 hr to 0.1114 kg/ m2 hr as 0.5 wt% of LiBr was added to the polymer matrix. Furthermore, an addition of 1 wt% of LiBr compared to homogeneous PVA membrane increased selectivity from 76 to 779. POLYM. ENG. SCI., 59:E101–E111, 2019. © 2018 Society of Plastics Engineers  相似文献   

17.
Polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN) ultrafiltration (UF) membranes are widely used in drinking water and wastewater applications. These membranes are prone to fouling and membrane efficiency decreases with time under constant operation. Significant improvements/modifications are necessary to apply these polymers as sustainable membrane materials. In this study, PVDF and PAN UF membranes were modified through incorporation of nanoparticles (NPs) namely SiO2 and TiO2. PVDF and PAN UF membranes were prepared by phase inversion method from polymer solutions having dispersed SiO2 and TiO2 NPs in it. Membrane surface hydrophilicity, charge, roughness, and morphology were studied. Equilibrium water content and molecular weight cut-off of the membranes were also measured. Addition of NPs increased membrane surface hydrophilicity, equilibrium water content, and surface potential. NPs modified membranes exhibited better membrane flux (35–79% higher) and antifouling properties (flux recovery ratio values 28–41% higher) than the virgin membranes.  相似文献   

18.
Polyamide thin‐film composite nanofiltration (NF) membranes were prepared via the interfacial polymerization (IP) process of piperazine and 1,3,5‐trimesoyl chloride on the polysulfone/nonwoven fabric ultrafiltration membrane surface. Carboxylated multiwalled carbon nanotubes (cMWNTs) were incorporated into the aqueous phase during the IP process to improve the membrane performance. The composition and morphology of the membrane surface were examined by means of attenuated total reflectance–Fourier transform infrared spectroscopy, scanning electron microscopy–energy dispersive spectrometry, and atomic force microscopy. The effects of the cMWNTs content on the membrane hydrophilicity, separation performance, and antifouling properties were characterized through water contact angle and crossflow filtration measurements. The experimental results show that membrane surface hydrophilicity, water permeability, salt rejection (R ), and antifouling properties all improved. In particular, when the cMWNTs content was 50 ppm, the magnesium sulfate R of the composite NF membrane reached a maximum value of 98.5%; meanwhile, the membrane obtained an obviously enhanced water flux (62.1 L m?2 h?1 at 0.7 MPa), which was two times larger than that of the original NF membrane. The modified NF membranes showed enhanced antifouling properties; this was mainly attributed to changes in the microstructures and surface features of the polyamide layer after the addition of the cMWNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45268.  相似文献   

19.
Poly(arylene sulfide sulfone) (PASS) is a kind of newly developed polymeric membrane material which has excellent mechanical strength, thermal stability, and solvent resistance. And, it would be a potential material for high temperature ultrafiltration and organic solvent filtration. In this article, PASS hybrid ultrafiltration membrane with improved antifouling property was prepared by mixing TiO2 nanoparticles which were grafted with polyacrylic acid (PAA). These membranes were prepared by a phase inversion technique and their separation performance and antifouling property of the prepared membranes were investigated in detail by SEM, FTIR, EDS, contact angle goniometry, filtration experiments of water, and BSA solution. The results shown that the TiO2g‐PAA nanoparticles dispersed well in membrane matrix, the hydrophilicity of the membranes prepared within TiO2g‐PAA nanoparticles have been improved and these membranes exhibited excellent water flux and antifouling performance in separation than that of the pure PASS membranes and PASS membranes with TiO2 nanoparticles. More specifically, among membrane sample M0, M1.5, and MP1.5, MP1.5 which contained 1.5 wt% TiO2g‐PAA exhibited the highest water permeation (190.4 L/m2 h at 100 kPa), flux recovery ratio, and the lowest BSA adsorption amount. POLYM. ENG. SCI., 55:2829–2837, 2015. © 2015 Society of Plastics Engineers  相似文献   

20.
Inorganic nanoparticles (NPs) have been employed in modification for polyvinyl chloride (PVC) membrane intrinsic hydrophobicity. Carboxymethyl chitosan (CMC), a natural organic matter, was used to relieve the agglomeration of zinc oxide (ZnO) NPs in the membrane matrix. In this paper, ZnO-CMC NPs were successfully prepared via co-precipitation approach, blended with PVC membranes, and the effect of ZnO-CMC NPs for the membrane properties was studied. The SEM and EDX confirmed excellent dispersion of ZnO-CMC NPs on the membrane surface. The enhanced hydrophilicity, porosity and inter-connected finger-like strcture of modified membranes confirmed by water contact angle and SEM. In addition, pure water flux of PVC/ZnO-CMC composite membrane was 107.36 L m−2 h−1 (PVC/ZnO-CMC (0.25 wt%)), which was higher than that of neat PVC membrane (83.11 L m−2 h−1). Importantly, the modified membranes exhibits lower static BSA adsorbtion because of the improved hydrophilicity, and a higher flux recovery rate (>90%) after three sequential filtration cycles. The antibacterial behavior of PVC/ZnO-CMC membrane was tested simply using Escherichia coli, and the results indicated that all composite membranes possess excellent antibacterial properties. Our work presents PVC/ZnO-CMC NPs composite membrane a promising future in wastewater treatment and antibacterial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号