首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112192篇
  免费   11722篇
  国内免费   6200篇
工业技术   130114篇
  2024年   309篇
  2023年   2270篇
  2022年   4038篇
  2021年   5666篇
  2020年   4276篇
  2019年   3360篇
  2018年   3676篇
  2017年   3908篇
  2016年   3418篇
  2015年   5025篇
  2014年   6248篇
  2013年   6846篇
  2012年   8033篇
  2011年   8586篇
  2010年   7448篇
  2009年   7080篇
  2008年   6806篇
  2007年   6228篇
  2006年   5950篇
  2005年   4893篇
  2004年   3602篇
  2003年   3238篇
  2002年   3393篇
  2001年   2839篇
  2000年   2206篇
  1999年   2139篇
  1998年   1621篇
  1997年   1405篇
  1996年   1220篇
  1995年   1031篇
  1994年   829篇
  1993年   613篇
  1992年   513篇
  1991年   329篇
  1990年   259篇
  1989年   196篇
  1988年   154篇
  1987年   104篇
  1986年   85篇
  1985年   51篇
  1984年   38篇
  1983年   32篇
  1982年   47篇
  1981年   26篇
  1980年   37篇
  1979年   15篇
  1978年   2篇
  1959年   3篇
  1951年   11篇
  1940年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Microbiologically influenced corrosion induced by bacteria has been studied for many years. Corrosion is known to be sensitive to the presence of microalgae, such as Phaeodactylum tricornutum. However, the life activity of P. tricornutum that influences the general and localized corrosion of carbon steel is not fully understood. The current study uses a combination of immersion tests and electrochemical experiments with a detailed surface characterization to reveal the naturally formed corrosion products with/without the presence of P. tricornutum. The results show that samples suffer from pitting corrosion and the averaged pit depths are approximately 15 μm under a light–dark cycle condition or a 24-h constant light condition. Meanwhile, the corrosion products are mainly comprised of γ-FeOOH and Fe3O4 in a constant light condition. However, γ-FeOOH, Fe3O4, and FeCO3 are found in a light–dark cycle. This study proposes the fundamental mechanisms of the effect of P. tricornutum life activities on the corrosion performance of Q235 carbon steel, to fulfill the knowledge gaps of the presence of microalgae inducing the general and pitting corrosion of carbon steel.  相似文献   
2.
Zhao  Kui  He  Fangmin  Meng  Jin  Wu  Hao  Zhang  Lei 《Wireless Networks》2021,27(3):1671-1681
Wireless Networks - In such mobile platforms as ships and aircraft, the detection and reconnaissance devices are near to the communication facilities. When working at the same time, they will...  相似文献   
3.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   
4.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
5.
Carbon black (CB) filled elastomers are structurally complex materials that offer unique properties at different length scales. They have tremendous potential applications in a number of fields including the automotive and aerospace industries and for designing innovative smart materials such as artificial muscles but their applications remain limited primarily due to inadequate understanding of their unique mechanical properties. Here, using the Berkovich technique to probe the surface mechanical properties at different scales the nanoindentation response of a series of composites made by homogeneously dispersed CB nanoparticles inside a semicrystalline copolymer matrix has been explored. While the measured loading part of the force–displacement curves is well described by Meyer's empirical power relation, the inverted methodology (IM) approach to deal with the unloading part has been considered and its outcome has been compared with that obtained from the standard Oliver–Pharr's method. The results were consistent with the observed increase of hardness when the applied displacement decreases for all composite samples over a large range of CB volume fraction. Zhang and Xu's model is demonstrated to produce experimentally consistent explanation of this indentation size effect. X-ray photoelectron spectroscopy (XPS) spectra also show composition gradients with depth up to 100 nm. Furthermore, the effect of CB content, surface features, and length scale-dependent deformation on the hardness–displacement behavior have been considered. These findings highlight the possibility of attaining a diverse set of mechanical properties by a better understanding of the nanoindentation response of CB filled elastomers which can be useful for material selection and design improvements in a number of practical applications.  相似文献   
6.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
7.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
8.
The luminescent hydrogen-bonded organic framework (HOF) based films have become one of the most remarkable materials for optical application, thus, developing facile synthesis methods and establishing multifunctional applications for HOF-based luminescent materials are essential. Herein, a dual-emitting Eu3+-functionalized HOF hydrogel film ( 1 ) is fabricated successfully. 1 emits a blue-green long afterglow when turning off the UV lamp, and the long afterglow lifetime gets to 1.99 s. 1 performs great selectivity, high sensitivity, and low detection limit toward ofloxacin and flumequine, and the sensing toward ofloxacin and flumequine is in accord with the chroma and ratio modes. The fluorescent response mechanisms of 1  toward ofloxacin and flumequine are investigated in depth, which are further utilized to build an anticounterfeiting platform with high-level security. The film-based anticounterfeiting platform can conduct information encryption on demand inline with different fluorescent responses and can also fetch specific information by controlling the long afterglow intensity and excited light. This study not only provides a representative case of the fabrication of dual-emitting Eu3+-functionalized HOF-based hydrogel film but also opens the possibility of HOF-based film as intelligent luminescent materials with multifunctionalities.  相似文献   
9.
气藏平均地层压力跟踪计算新方法   总被引:1,自引:0,他引:1  
平均地层压力是产能评价和动态分析的基础,准确、快速获取平均地层压力对高效开发气藏意义重大。基于地层压力随时间变化的规律,分析了平均地层压力的变化规律。研究结果表明:平均地层压力等效点仅随时间发生改变,平均地层压力的下降速率等于或者近似等于井底流压的下降速率。从封闭弹性驱动气藏的物质平衡方程出发,考虑偏差系数和井底流压随平均地层压力的变化,推导建立了平均地层压力跟踪计算新方法,根据生产数据可迭代计算平均地层压力。方法验证结果显示,采气速度和采出程度共同影响模型的计算结果。应用实例表明,跟踪计算法与压力恢复试井和物质平衡法之间的相对误差均较小,满足工程计算精度要求,且跟踪计算法不需依托生产测试数据,节约了测试费用,避免了测试占产。  相似文献   
10.
王贺  邵玥  宁涣昌 《建筑技术》2021,52(2):173-176
北京某文旅项目201单体为造型复杂的大跨度玻璃穹顶建筑,其机电管线和灯具在穹顶水平环梁和主拱梁上安装难度极大.经研究采用综合支架、合理规划路由等措施,满足了设计和使用要求.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号