首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   9篇
工业技术   155篇
  2024年   1篇
  2023年   9篇
  2022年   11篇
  2021年   4篇
  2020年   7篇
  2019年   11篇
  2018年   9篇
  2017年   4篇
  2016年   10篇
  2015年   8篇
  2014年   6篇
  2013年   12篇
  2012年   7篇
  2011年   7篇
  2010年   6篇
  2009年   5篇
  2008年   12篇
  2007年   8篇
  2006年   1篇
  2005年   2篇
  2002年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1989年   1篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
1.
In this paper, an experimental study of the conventional solar still (CSS), the conventional solar still with glass cooling (CSSGC), the conventional solar still with basin heating (CSSBH), and the conventional solar still with glass cooling and basin heating (CSSGCBH) was carried out on the basis of the distilled water production, the energy efficiency (EnE), the exergy efficiency (ExE), and economic analysis. The CSSGC and CSSBH contain Peltier modules for cooling the glass and heating the basin. The evaporative heat transfer coefficient for all the experimental stills was calculated. The values of daily distilled water production from the CSSGCBH, CSSBH, CSSGC, and CSS were 4.56, 3.79, 2.49, and 1.89 kg/m2, respectively. The daily distilled yield of the CSSBH and CSSGCBH were increased by 58.55% and 50.13%, respectively, as compared with the CSS. Moreover, the daily EnE and ExE of the CSSGCBH were 27.03% and 3.5%, respectively, whereas the EnE and ExE of the CSS were 10.88% and 1.3%, respectively. Furthermore, the cost of distilled water production was found to be 0.26, 0.35, 0.53, and 0.64 $/day for the CSS, CSSGC, CSSBH, and CSSGCBH, respectively, if the selling price of the distilled water was Rs10.  相似文献   
2.
Near-infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless-based phototherapies by converting deep-tissue-penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep-sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA-approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5-aminolevulinic acid (5-ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR-based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep-tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep-tissue light delivery.  相似文献   
3.
Titanium dioxide (TiO2) nanoparticles (NPs) were synthesized through solvothermal route by changing the rate of hydrolysis in the catalytic process. In order to change the hydrolysis rate, the concentration of acetic acid, as additive, was varied as 2 M, 3 M and 4 M. The synthesized NPs were examined by various physico-chemical characterization techniques. The powder X-ray diffraction (PXRD) analysis of the NPs reveals only the anatase phase of TiO2. The spherical shaped morphology of the NPs was observed in the high-resolution transmission electron microscopy (HR-TEM) analysis. The optical behaviour such as absorption, bandgap, diffuse reflectance and photoluminescence (PL) emission of the NPs were studied. The material's nature and behaviors were scrutinized and they were employed as photoanode in dye sensitized solar cell (DSSC) and as electron transport layer (ETL) in carbon-based perovskite solar cell (C-PSC). The charge transfer at the interface of the devices was studied with electrochemical impedance spectroscopy (EIS). The fabricated DSSC and C-PSC show highest power conversion efficiency (PCE) of 6.1% and 10.6%, respectively. The highest current collection was detected in C-PSC and the results are discussed in detail.  相似文献   
4.
Low temperature water–gas shift (LT-WGS) was performed over various group I alkali metal (Li, Na, K, Rb, Cs) promoted cobalt carbide (Co2C) catalysts at temperatures ranging from 453 to 573 K and atmospheric pressure. Cobalt carbide (Co2C) was found to be active for the WGS reaction. The stability of the catalyst is related to the stability of the cobalt carbide phases under reaction conditions. Potassium promoted cobalt carbide catalysts exhibited higher activity and stability compared to the other alkali promoted catalysts for LT-WGS. X-ray diffraction analyses of fresh and used catalysts suggest that the origin of deactivation of the catalysts is primarily due to the chemical transition of cobalt from carbide to metal during WGS.  相似文献   
5.
This work aims at augmenting the amount of potable water using MgO and TiO2 in stepped solar still. Experiments were carried out for the climatic conditions of Chennai, India, with two different concentrations of nanofluids inside a stepped basin under three different cases. Results show that there is an improvement in yield of fresh water from stepped solar still by 33.18% and 41.05% using 0.1% and 0.2% volume concentration of TiO2 nanofluid, respectively, whereas the freshwater yield from stepped still with MgO nanofluids improved by 51.7% and 61.89%. Furthermore, the economic analysis revealed that the cost of potable water from the modified solar still reduced from 0.029 to 0.016 $/kg. Similarly, the useful annual energy, yearly cost per kilogram, and annual cost per kilowatt hour are significantly profitable with the use of MgO nanofluid in the stepped basin and found as 512.46 kWh, 0.025 $/kg, and 0.026 $/kWh, respectively. It is also found that the cost of potable water from the modified still significantly increases as the amount of fresh water produced is decreased with increased fabrication cost of the solar still.  相似文献   
6.
This study primarily focuses on comparative experimental analysis on standalone conventional solar still (CSS), inclined solar still (ISS), and integrated conventional and inclined solar still (CSS‐ISS) for different parameters that affect the freshwater yield. For enhancing the freshwater yield only a few studies are available on still‐still integration. The present novel study provides a greater improvement in improving the freshwater yield by integrating ISS with CSS. This experimental work mainly concentrates on the importance of water depth (d w) and mass flow rate of water ( m w) in the solar still. Water depth inside the conventional still varied from 0.02 to 0.06 m whereas, water is constantly flown with a mass flow rate of 8.33 kg/hour in an ISS with baffles. The experimental result shows that the accumulated freshwater yield from CSS‐ISS, ISS, and CSS were 6.2, 5.04, and 4.24 kg, respectively. CSS‐ISS and ISS produced 46.23% and 18.87% higher productivity than the CSS. From the experimental investigation, it is also identified that the water temperature is significantly improved by 20% using integration as compared with CSS without integration under the same water depth of d w = 0.02 m. The overall improvement in yield was higher in the case of CSS‐ISS. The deviations between experimental and theoretical values of yield from the conventional and modified solar still were in the range of ±7%.  相似文献   
7.
A safe and cost effective material for hydrogen storage is indispensable for developing hydrogen fuel cell technology to reach its greater heights. The present work deals with hydrogen storage performance of lithium borohydride decorated activated hexagonal boron nitride (LiBH4@Ah-BN) nanocomposite. where a facile chemical impregnation method was adopted for the preparation of LiBH4@Ah-BN nanocomposite. The prepared nanocomposite was subjected to various characterization techniques such as X-ray Diffraction (XRD), Micro-Raman Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Brunauer–Emmett–Teller (BET) Studies, CHNS-Elemental Analysis and Thermo Gravimetric Analysis (TGA). From BET studies, it is confirmed that, there is an enhancement in the specific surface area of LiBH4@Ah-BN nanocomposite (122 m2/g) compared to Ah-BN (70 m2/g). The hydrogen storage ability was examined using a Sieverts-like hydrogenation setup. An excellent hydrogen storage capacity of 2.3 wt% at 100 °C was noticed for LiBH4@Ah-BN nanocomposite. The TGA study indicates the dehydrogenation profile of stored hydrogen in the range of 110–150 °C. The binding energy of stored hydrogen (0.31 eV) lies in recommended range of US-DOE 2020 targets for fuel cell applications. The present investigation demonstrates the preparation of LiBH4@Ah-BN nanocomposite based hydrogen storage medium which has remarkable cycling stability and hydrogen storage capacity. Hence these desirable traits make LiBH4@Ah-BN nanocomposite as a potential hydrogen storage candidate for fuel cell applications in near future.  相似文献   
8.
Surface roughness, an indicator of surface quality is one of the most-specified customer requirements in a machining process. For efficient use of machine tools, optimum cutting parameters (speed, feed, and depth of cut) are required. So it is necessary to find a suitable optimization method which can find optimum values of cutting parameters for minimizing surface roughness. The turning process parameter optimization is highly constrained and non-linear. In this work, machining process has been carried out on brass C26000 material in dry cutting condition in a CNC turning machine and surface roughness has been measured using surface roughness tester. To predict the surface roughness, an artificial neural network (ANN) model has been designed through feed-forward back-propagation network using Matlab (2009a) software for the data obtained. Comparison of the experimental data and ANN results show that there is no significant difference and ANN has been used confidently. The results obtained conclude that ANN is reliable and accurate for predicting the values. The actual R a value has been obtained as 1.1999???m and the corresponding predicted surface roughness value is 1.1859???m, which implies greater accuracy.  相似文献   
9.
The hydrogenation of ethyl butyrate, n-butyric acid, and n-butyraldehyde to their corresponding alcohol(s) has been studied over a γ-Al2O3-supported cobalt catalyst using a high-pressure fixed-bed reactor in the temperature range of 473–493 K. H2–D2–H2 switching experiments show that ethyl butyrate and n-butyric acid follow an inverse kinetic isotope effect (KIE) (i.e. rH/rD = 0.50–0.54), whereas n-butyraldehyde did not display any KIE (i.e. rH/rD = 0.98). DRIFTS experiments were performed over the support and catalyst to monitor the surface species formed during the adsorption of ethyl butyrate and n-butyric acid at atmospheric pressure and the desired temperature. Butanoate and butanoyl species are the stable surface intermediates formed during hydrogenation of ethyl butyrate. Hydrogenation of butanoate to a partially hydrogenated intermediate is likely involved in the rate-determining step of ethyl butyrate and butyric acid hydrogenation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号