首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aims to improve the performances of a solar still single slope using metal oxide nanofluid (Al2O3–water, Cu2O–water, and TiO2–water). The numerical study was carried out for the climatic conditions of Agadir, Morocco, with different concentrations of nanofluids inside a basin equipped with an absorber plate with two different absorptivities. The numerical study is based on thermal balance equations applied on different solar system components and solved using the Runge Kutta method. The numerical model is validated by comparing our results with the literature available data. A comparison study of the effect of these nanofluids on solar still productivity is done. The results show that the productivity of the solar still using nanoparticles Cu2O, TiO2, and Al2O3 are 7.38, 7.1, and 7.064 kg m−2 day−1, respectively. It is obtained that the maximum efficiency of the solar still is found to be 55.27% by using cuprous oxide nanoparticles. Furthermore, an enhancement in solar still productivity of 6.36%, 19.54%, and 33.25% is obtained by dispersing 1%, 3%, and 5% volume fraction of Cu2O nanoparticles in pure water, respectively compared to the conventional solar. Moreover, the impact of the absorptivity of the absorber plate on the solar still effectiveness is investigated. Two types of coatings are considered to change the absorber plate absorptivity. The results indicate that the efficiencies of the solar system are 58.81% and 51.77% using an absorber plate with 0.95 and 0.85 of absorptivity, respectively.  相似文献   

2.
The heat transfer coefficient and friction factor of TiO2 and SiO2 water based nanofluids flowing in a circular tube under turbulent flow are investigated experimentally under constant heat flux boundary condition. TiO2 and SiO2 nanofluids with an average particle size of 50 nm and 22 nm respectively are used in the working fluid for volume concentrations up to 3.0%. Experiments are conducted at a bulk temperature of 30 °C in the turbulent Reynolds number range of 5000 to 25,000. The enhancements in viscosity and thermal conductivity of TiO2 are greater than SiO2 nanofluid. However, a maximum enhancement of 26% in heat transfer coefficients is obtained with TiO2 nanofluid at 1.0% concentration, while SiO2 nanofluid gave 33% enhancement at 3.0% concentration. The heat transfer coefficients are lower at all other concentrations. The particle concentration at which the nanofluids give maximum heat transfer has been determined and validated with property enhancement ratio. It is observed that the pressure drop is directly proportional to the density of the nanoparticle.  相似文献   

3.
Homogeneous stable suspensions acquired by dispersing dry Al2O3 and TiO2 nanoparticles in controlled pH solution and distilled water, respectively, were prepared and investigated in this study. First of all, the mean nanoparticle diameters were studied by dynamic light scattering (DLS) technique, and the nanofluid stability was analyzed by zeta potential measurements. The nano-crystalline structures were characterized by scanning electron microscope and transmission electron microscope. The rheological behavior was determined for both nanofluids at nanoparticle volume concentrations up to 0.3%. The effect of temperature for the heating and cooling phases was analyzed from 25 °C to 80 °C. Furthermore, the influence of temperature, pressure drop, pumping power, zeta potential, size and densities were analyzed for fresh prepared samples as well as for samples used in a flat plate solar collector over a period of 30 days. The thermal conductivity enhancement of the two nanofluids demonstrated a nonlinear relationship with respect to temperature and volume fraction, with increases in the volume fraction and temperature. All resulted in an increase in the measured enhancement. Existence of a critical temperature was observed beyond which the particle suspension properties altered drastically, which in turn triggered a hysteresis phenomenon. The hysteresis phenomenon on viscosity measurement, which is believed to be the first observed for Al2O3/water and TiO2/water-based nanofluids, has raised serious concerns about the use of nanofluids for heat transfer enhancement. The pressure drop and pumping power of the nanofluid flows are found to be very close to those of the base liquid for low volume concentration. It may be concluded that nanofluids can be utilized as a working medium with a negligible effect of enhanced viscosity and/or density. Our findings provide a view on the thermo physical properties of nanofluids that is compared with that in the literature, and new findings (such as viscosity, hysteresis phenomenon and pumping power) have been presented, which are not available in literature as yet.  相似文献   

4.
The study was conducted to determine the consequences of a carbon tax, equal to an estimated social cost of carbon of $37.2/Mg, on household electricity cost, and to determine if a carbon tax would be sufficient to incentivize households to install either a grid-tied solar or wind system. U.S. Department of Energy hourly residential profiles for five locations, 20 years of hourly weather data, prevailing electricity pricing rate schedules, and purchase prices and solar panel and wind turbine power output response functions, were used to address the objectives. Two commercially available household solar panels (4 kW, 12 kW), two wind turbines (6 kW, 12 kW), and two price rate structures (traditional meter, smart meter) were considered. Averaged across the five households, the carbon tax is expected to reduce annual consumption by 4.4% (552 kWh/year) for traditional meter households and by 4.9% (611 kWh/year) for households charged smart meter rates. The carbon tax increases electricity cost by 19% ($202/year). For a household cost of $202/year the carbon tax is expected to reduce social costs by $11. Annual carbon tax collections of $234/household are expected. Adding the carbon tax was found to be insufficient to incentivize households to install either a solar panel or wind turbine system. Installation of a 4 kW solar system would increase the annual cost by $1546 (247%) and decrease CO2 emissions by 38% (2526 kg) valued at $94/household. The consequence of a carbon tax would depend largely on how the proceeds of the tax are used.  相似文献   

5.
The hybrid nanofluid has been thriving among researchers due to its potential to improve heat transfer performance. Therefore, various studies on heat transfer properties need to be carried out to provide a better understanding on hybrid nanofluid performance. In this paper, the experimental work is focused on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in a mixture of water and ethylene glycol (EG) with volume ratio of 60:40. The stable suspension of TiO2-SiO2 prepared at volume concentrations of 0.5 to 3.0%. The measurements of thermal conductivity and dynamic viscosity were performed at a temperature range of 30 to 80 °C by using KD2 Pro Thermal Properties Analyser and Brookfield LVDV III Ultra Rheometer, respectively. The thermal conductivity of TiO2-SiO2 nanofluids was improved by increasing the volume concentration and temperature with 22.8% maximum enhancement. Besides, the viscosity of TiO2-SiO2 nanofluids showed evidence of being influenced by nanofluid concentration and temperature. Additionally, the TiO2-SiO2 nanofluids behaved as a Newtonian fluid for volume concentration up to 3.0%. The properties enhancement ratio suggested that TiO2-SiO2 nanofluids will aid in heat transfer for concentrations of more than 1.5% and within the range of the temperature studied. A new correlation for thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids were developed and found to be precise.  相似文献   

6.
Estimating the manufacturing cost of purely organic solar cells   总被引:1,自引:0,他引:1  
In this paper we estimate the manufacturing cost of purely organic solar cells. We find a very large range since the technology is still very young. We estimate that the manufacturing cost for purely organic solar cells will range between $50 and $140/m2. Under the assumption of 5% efficiency, this leads to a module cost of between $1.00 and $2.83/Wp. Under the assumption of a 5-year lifetime, this leads to a levelized cost of electricity (LEC) of between 49¢ and 85¢/kWh. In order to achieve a more competitive COE of about 7¢/kWh, we would need to increase efficiency to 15% and lifetime to between 15-20 years.  相似文献   

7.
The many factors that influence the productivity of solar stills are discussed in three categories: atmospheric variables, design features and operational techniques. Data on the large solar stills which have been operated are tabulated, and productivity curves are given for several basin-type stills. The economics of solar distillation is also considered, and an equation is presented to calculate the cost of producing fresh water. A primary area for further work is identified, that of proving the durability of improved materials by the successful long-term operation of large solar stills. Solar distillation appears well suited for the supply of potable water to small communities where the natural supply of fresh water is inadequate or of poor quality, and where sunshine is abundant. The capital cost of large permanent-type solar stills can be as low as $1 per ft2 of basin area, which is equivalent to $10 to $15 per daily gallon output, depending on the yearly amount of solar radiation and rainfall collection. The corresponding distilled water cost is between $3 and $4 per 1000 gal. These water costs are generally lower than those associated with other types of desalination equipment in plant sizes of up to, perhaps, 50,000 gpd.  相似文献   

8.
In this paper, an experimental study was performed to investigate the photothermal conversion properties of CuO‐H2O nanofluid‐based volumetric receiver mainly considering the effects of nanoparticle (NP) concentration, irradiation time, and receiver depth. First, stable aqueous suspensions of CuO with NPs having average diameter close to 10 nm were produced by the precursor transformation method. The spectral transmittances of CuO‐H2O nanofluids decrease with increasing the NP concentration (0.01‐0.25 wt%) at wavelengths of 200 to 1350 nm. The photothermal conversion performance of CuO‐H2O nanofluids is sensitive to the receiver depth, irradiation time, and NP concentration. The higher NP concentration causes stronger optical absorption in the upper part and reduces the temperature at the bottom accordingly. The temperature difference between CuO‐H2O nanofluid and distilled water increased initially and then decreased with the increase of penetration depth, and there existed an optimal depth of 1 cm with respect to the best photothermal conversion performance. The receiver efficiency decreased with increasing the light irradiation time, and an efficiency improvement up to 30.4% was achieved for the 0.25 wt% nanofluid at the optimal depth of 1 cm as compared with water. This work shows that volumetric receivers provide a potential alternative for solar thermal energy utilization versus surface‐based absorber especially under concentrated solar radiation.  相似文献   

9.
The study aims to optimize the geothermal and solar-assisted sustainable energy and hydrogen production system by considering the genetic algorithm. The study will be useful by integrating hydrogen as an energy storage unit to bring sustainability to smart grid systems. Using the Artificial Neural Network (ANN) based Genetic Algorithm (GA) optimization technique in the study will ensure that the system is constantly studied in the most suitable under different climatic and operating conditions, including unit product cost and the plant's power output. The water temperature of the Afyon Geothermal Power Plant varies between 70 and 130 °C, and its mass flow rate varies between 70 and 150 kg/s. In addition, the solar radiation varies between 300 and 1000 W/m2 for different periods. The net power generated from the region's geothermal and solar energy-supported system is calculated as 2900 kW. If all of this produced power is used for hydrogen production in the electrolysis unit, 0.0185 kg/s hydrogen can be produced. The results indicated that the overall energy and exergy efficiencies of the integrated system are 4.97% and 16.0%, respectively. The cost of electricity generated in the combined geothermal and solar power plant is 0.027 $/kWh if the electricity is directly supplied to the grid and used. The optimized cost of hydrogen produced using the electricity produced in geothermal and solar power plants in the electrolysis unit is calculated as 1.576 $/kg H2. The optimized unit cost of electricity produced due to hydrogen in the fuel cell is calculated as 0.091 $/kWh.  相似文献   

10.
In the present work the effect of Al2O3-water nanofluid, as working fluid, on the efficiency of a flat-plate solar collector was investigated experimentally. The weight fraction of nanoparticles was 0.2% and 0.4% and the particles dimension was 15 nm. Experiments were performed with and without Triton X-100 as surfactant. The mass flow rate of nanofluid varied from 1 to 3 Lit/min. The ASHRAE standard was used to calculate the efficiency. The results show that, in comparison with water as absorption medium using the nanofluids as working fluid increase the efficiency. For 0.2 wt% the increased efficiency was 28.3%. From the results it can be concluded that the surfactant causes an enhancement in heat transfer.  相似文献   

11.
In the present work a three-dimensional analysis is used to study the heat transfer characteristics of a double-tube helical heat exchangers using nanofluids under laminar flow conditions. CuO and TiO2 nanoparticles with diameters of 24 nm dispersed in water with volume concentrations of 0.5–3 vol.% are used as the working fluid. The mass flow rate of the nanofluid from the inner tube was kept and the mass flow rate of the water from the annulus was set at either half, full, or double the value. The variations of the nanofluids and water temperatures, heat transfer rates and heat transfer coefficients along inner and outer tubes are shown in the paper. Effects of nanoparticles concentration level and of the Dean number on the heat transfer rates and heat transfer coefficients are presented. The results show that for 2% CuO nanoparticles in water and same mass flow rate in inner tube and annulus, the heat transfer rate of the nanofluid was approximately 14% greater than of pure water and the heat transfer rate of water from annulus than through the inner tube flowing nanofluids was approximately 19% greater than for the case which through the inner and outer tubes flow water. The results also show that the convective heat transfer coefficients of the nanofluids and water increased with increasing of the mass flow rate and with the Dean number. The results have been validated by comparison of simulations with the data computed by empirical equations.  相似文献   

12.
The enhancement of the productivity of the solar desalination system, in a certain location, could be attained by a proper modification in the system design. Therefore, different design configurations could be found in literatures. However, the increase in the system productivity with high system cost may increase also the average annual cost of the distillate. Cost analysis of different design configurations of solar desalination units is essential to evaluate the benefit of modification from the economical point of view. The main objective of this work is to estimate the water production cost for different types of solar stills. In this paper 17 design configurations are considered. Systems with higher and lower values of productivity are considered in this investigation. A simplified model for cost analysis is applied in this study. The results show that, the best average and maximum daily productivity are obtained from solar stills of single-slope and pyramid-shaped. The higher average annual productivity for a solar still is about 1533 l/m2 using pyramid-shaped while the lower average annual productivity is about of 250 l/m2 using modified solar stills with sun tracking. The lowest cost of distilled water obtained from the pyramid-shaped solar still is estimated as 0.0135 $/l while highest cost from the modified solar stills with sun tracking is estimated as 0.23 $/l.  相似文献   

13.
This study deals with the theoretical enhancement of thermal performance using water‐based (50/50) volume fraction of Fe2O3, CuO, TiO2, Ag, Cu in Al2O3 hybrid nanofluids as coolants for a louvered fin automobile radiator. The effects on thermophysical properties and various performance parameters, i.e., heat transfer, effectiveness, and pumping power of hybrid nanofluids have been compared with water. Among all studied hybrid nanofluids, Al2O3‐Ag/water hybrid nanofluid has higher effectiveness, heat transfer rate, pumping power, and pressure drop of 0.8%, 3%, 6%, and 5.6%, respectively, as compared to water and is followed by (50/50) volume fraction of Cu, CuO, Fe2O3, TiO2 hybrid nanofluids as radiator coolant. For the same radiator size and heat transfer rate, coolant flow rate and pumping work decreases by 3%, 4%, respectively, for Al2O3‐Ag/water hybrid nanofluid and for the same coolant flow rate and heat transfer rate the radiator size decreases by 3% and pumping power increases by 3.4% for Al2O3‐Ag/water hybrid nanofluid as compared to water. Reduction in radiator size may lead to a reduction in radiator cost, engine fuel consumption, and environmental benefit.  相似文献   

14.
In this work, a stepped solar still and an effluent settling tank are fabricated and tested for desalinating the textile effluent. The effluent is purified in an effluent settling tank. In this tank, large and fine solid particles are settled and clarified. The settled effluents are used as raw water in the stepped solar still. For better performance, the stepped solar still consists of 50 trays with two different depths. First 25 trays with 10 mm height and the next 25 trays with 5 mm height are used. Fin, sponge, pebble and combination of the above are used for enhancing the productivity of the stepped solar still. A maximum increase in productivity of 98% occurs in stepped solar still when fin, sponge and pebbles are used in this basin. Theoretical analysis agrees well with experimental results.  相似文献   

15.
Nanofluid is a new class of heat transfer fluids engineered by dispersing metallic or non-metallic nanoparticles with a typical size of less than 100 nm in the conventional heat transfer fluids. Their use remarkably augments the heat transfer potential of the base liquids. This article presents the heat transfer coefficient and friction factor of the TiO2-water nanofluids flowing in a horizontal double tube counter-flow heat exchanger under turbulent flow conditions, experimentally. TiO2 nanoparticles with diameters of 21 nm dispersed in water with volume concentrations of 0.2–2 vol.% are used as the test fluid. The results show that the heat transfer coefficient of nanofluid is higher than that of the base liquid and increased with increasing the Reynolds number and particle concentrations. The heat transfer coefficient of nanofluids was approximately 26% greater than that of pure vol.%, and the results also show that the heat transfer coefficient of the nanofluids at a volume concentration of 2.0 vol.% was approximately 14% lower than that of base fluids for given conditions. For the pressure drop, the results show that the pressure drop of nanofluids was slightly higher than the base fluid and increases with increasing the volume concentrations. Finally, the new correlations were proposed for predicting the Nusselt number and friction factor of the nanofluids, especially.  相似文献   

16.
In the present study, the heat transfer characteristics of nanofluids cooling in the mini-rectangular fin heat sink are studied. The heat sinks with three different channel heights are fabricated from the aluminum by the wire electrical discharge machine with the length, width and base thickness of 110, 60, and 2 mm, respectively. The nanofluids are the mixture of de-ionized water and nanoscale TiO2 particles. The results obtained from the nanofluids cooling in mini-rectangular fin heat sink are compared with those from the de-ionized water cooling method. Effects of the inlet temperature of nanofluids, nanofluid Reynolds number, and heat flux on the heat transfer characteristics of mini-rectangular fin heat sink are considered. It is found that average heat transfer rates for nanofluids as coolant are higher than those for the de-ionized water as coolant. The results of this study are of technological importance for the efficient design of cooling systems of electronic devices to enhance cooling performance.  相似文献   

17.
Most inhabitants of rural communities in Africa lack access to clean and reliable electricity. This has deprived the rural dwellers access to modern healthcare delivery. In this paper, an off-grid renewable energy system consisting of solar PV and wind turbine with hydrogen storage scheme has been explored to meet the electrical energy demands of a health clinic. The health clinic proposed is a group II with 10 beds located in a typical village in South Africa. First, the wind and solar energy resources of the village were analysed. Thereafter, the microgrid architecture that would meet the energy demand of the clinic (18.67 kWh/day) was determined. Some of the key results reveal that the average annual wind speed at 60 m anemometer height and solar irradiation of the village are 7.9 m/s and 4.779 kWh/m2/day, respectively. The required architecture for the clinic composes of 40 kW solar PV system, 3 numbers of 10 kW wind turbines, 8.6 kW fuel cell, 25 kW electrolyser and 40 kg hydrogen tank capacity. The capital cost of the microgrid was found to be $177,600 with a net present cost of $206,323. The levelised cost of energy of the system was determined to be 2.34 $/kWh. The project has a breakeven grid extension distance of 8.81 km. Since this distance is less than the nearest grid extension distance of 21.35 km, it is established that the proposed renewable energy microgrid with a hydrogen storage system is a viable option for the rural community health clinic.  相似文献   

18.
In the present paper, the thermal conductivity of hybrid nanofluids is experimentally investigated. The studied nanofluid was produced using a two-step method by dispersing Cu and TiO2 nanoparticles with average diameter of 70 and 40 nm in a binary mixture of water/EG (60:40). The properties of this nanofluid were measured in various solid concentrations (0.1, 0.2, 0.4, 0.8, 1, 1.5, and 2%) and temperatures ranging from 30 to 60 °C. Next, two new correlations for predicting the thermal conductivity of studied hybrid nanofluids, in terms of solid concentration and temperature, are proposed that use an artificial neural network (ANN) and are based on experimental data. The results indicate that these two new models have great ability to predict thermal conductivity and show excellent agreement with the experimental results.  相似文献   

19.
Thermal conductivity of ethylene glycol and water mixture based Al2O3 and CuO nanofluids has been estimated experimentally at different volume concentrations and temperatures. The base fluid is a mixture of 50:50% (by weight) of ethylene glycol and water (EG/W). The particle concentration up to 0.8% and temperature range from 15 °C–50 °C were considered. Both the nanofluids are exhibiting higher thermal conductivity compared to base fluid. Under same volume concentration and temperature, CuO nanofluid thermal conductivity is more compared to Al2O3 nanofluid. A new correlation was developed based on the experimental data for the estimation of thermal conductivity of both the nanofluids.  相似文献   

20.
Parabolic dish solar collector system has capability to gain higher efficiency by converting solar radiations to thermal heat due to its higher concentration ratio. This paper examines the exergo-economic analysis, net work and hydrogen production rate by integrating the parabolic dish solar collector with two high temperature supercritical carbon dioxide (s-CO2) recompression Brayton cycles. Pressurized water (H2O) is used as a working fluid in the solar collector loop. The various input parameters (direct normal irradiance, ambient temperature, inlet temperature, turbine inlet temperature and minimum cycle temperature) are varied to analyze the effect on net power output, hydrogen production rate, integrated system energetic and exergetic efficiencies. The simulations has been carried out using engineering equation solver (EES). The outputs demonstrate that the net power output of the integrated reheat recompression s-CO2 Brayton system is 3177 kW, whereas, without reheat integrated system has almost 1800 kW net work output. The overall energetic and exergetic efficiencies of former system is 30.37% and 32.7%, respectively and almost 11.6% higher than the later system. The hydrogen production rate of the solarized reheat and without reheat integrated systems is 0.0125 g/sec and 0.007 g/sec, accordingly and it increases with rise in direct normal irradiance and ambient temperature. The receiver has the highest exergy destruction rate (nearly 44%) among the system components. The levelized electricity cost (LEC) of 0.2831 $/kWh with payback period of 9.5 years has proved the economic feasibility of the system design. The increase in plant life from 10 to 32 years with 8% interest rate will decrease the LEC from (0.434-0.266) $/kWh. Recuperators have more potential for improvement and their cost rate of exergy is higher as compared to the other components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号