首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   650篇
  免费   45篇
工业技术   695篇
  2023年   24篇
  2022年   11篇
  2021年   28篇
  2020年   23篇
  2019年   10篇
  2018年   26篇
  2017年   29篇
  2016年   22篇
  2015年   23篇
  2014年   18篇
  2013年   37篇
  2012年   36篇
  2011年   50篇
  2010年   25篇
  2009年   21篇
  2008年   17篇
  2007年   24篇
  2006年   23篇
  2005年   21篇
  2004年   15篇
  2003年   4篇
  2002年   9篇
  2001年   17篇
  2000年   2篇
  1999年   8篇
  1998年   42篇
  1997年   20篇
  1996年   16篇
  1995年   9篇
  1994年   7篇
  1993年   5篇
  1992年   3篇
  1990年   4篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1983年   7篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1977年   6篇
  1976年   4篇
  1974年   2篇
  1970年   2篇
  1967年   3篇
  1962年   1篇
  1941年   1篇
  1931年   1篇
排序方式: 共有695条查询结果,搜索用时 15 毫秒
1.
Solid solution-strengthened ductile iron (DI) exhibits outstanding mechanical properties due to the high silicon content. The strengthening by silicon addition is limited since additions above 4.3?wt-% lead to embrittlement. For a further improvement of mechanical properties, other alloying elements need to be considered. In the present work, the effect of various copper additions on the microstructure and the mechanical properties of solid solution-strengthened DI were investigated. The results show that no appreciable strengthening can be achieved by copper addition without the formation of pearlite in the matrix. The pearlite content increases considerably for Cu-additions above 0.23?wt-% and is independent of the cooling rate for the cooling conditions analysed.  相似文献   
2.
3.
A large-scale point to point hydrogen transport is one strategy for a prospective energy import scenario for certain countries. The case for a hydrogen transport from Australia to Japan has been addressed in several studies. However, most studies lack transparency and detailed insights into the made assumptions thus a fair evaluation of different transport pathways is challenging. To address this issue, we developed a model where a large-scale point to point hydrogen transport of liquid hydrogen is compared with the transport via liquid organic hydrogen carrier (LOHC), namely via methyl cyclohexane and hydrogenated dibenzyl toluene. We analyzed, where energy is required along the different pathways, where hydrogen losses do occur and how the costs are put together. Furthermore, the influence of hydrogen feed costs is also considered. For hydrogen production costs of 5 €2018/kgH2 the total delivery costs are in the range of 6.40– 8.10 €2018/kgH2.  相似文献   
4.
The so-called Freeze Foaming method aims at manufacturing ceramic cellular scaffolds for diverse applications. One application is dedicated to potential bone replacement material featuring open, micro and interconnected porosity. However, the main challenges of this foaming method is to achieve a homogeneous pore morphology. In a current project, the authors throw light on the bubble/pore and strut formation of this process by in situ computed tomography. This allows for evaluating varying process parameter’s effects on the growth of the ceramic foam during the foaming process. As first result and basis for CT analysis, a stable and reproducible model suspension was developed which resulted in reproducible foam structures. In dependence of selected process parameters like pressure reduction rate or air content in the ceramic suspension resulting Freeze Foams became adjustable with regard to their pore morphology. Pore size and distribution data as well as the porosity were characterized and evaluated accordingly.  相似文献   
5.
6.
Experimental and analytical investigation of the seismic out‐of‐plane behavior of unreinforced masonry walls In addition to the vertical and horizontal load‐bearing in‐plane, masonry must also withstand out‐of‐plane loads that occur in earthquake scenarios. The out‐of‐plane behavior of unreinforced masonry walls depends on a variety of parameters and is very complex due to the strong non‐linearity. Current design methods in German codes and various international codes have not been explicitly developed for out‐of‐plane behavior and contain considerable conservatism. In the present work, shaking‐table experiments with heat‐insulating masonry walls have been conducted to investigate the out‐of‐plane behavior of vertical spanning unreinforced masonry walls. As shown in previous numerical investigations, important parameters are neglected in existing design and analysis models and the out‐of‐plane capacity is underestimated significantly. In the conducted experiments the results of these numerical investigations are verified. Furthermore, the development of an analytical design model to determine the force‐displacement relationship and the out‐of‐plane load‐bearing capacity considering all significant parameters is presented.  相似文献   
7.
The SARS-CoV-2 pandemic has created a great demand for a better understanding of the spread of viruses in indoor environments. A novel measurement system consisting of one portable aerosol-emitting mannequin (emitter) and a number of portable aerosol-absorbing mannequins (recipients) was developed that can measure the spread of aerosols and droplets that potentially contain infectious viruses. The emission of the virus from a human is simulated by using tracer particles solved in water. The recipients inhale the aerosols and droplets and quantify the level of solved tracer particles in their artificial lungs simultaneously over time. The mobile system can be arranged in a large variety of spreading scenarios in indoor environments and allows for quantification of the infection probability due to airborne virus spreading. This study shows the accuracy of the new measurement system and its ability to compare aerosol reduction measures such as regular ventilation or the use of a room air purifier.  相似文献   
8.
Quantum dots (QDs) are semiconductor inorganic fluorescent nanocrystals in the size range between 1 and 20 nm. Due to their very small size, they possess unique properties and behave in different way than crystals in macro scale. The specificity of QDs makes them widespread in many branches of human life. The disciplines that took recently huge advantage from the development of nanotechnology are medicine and pharmacy. The creation of particles of very tiny sizes allowed these two sciences to develop or revolutionize the techniques of diagnosis or drug delivery. The most important feature for application of fluorescent nanocrystals in medical and pharmaceutical sciences is their high surface to volume ratio enabling QDs' conjugation to multiple ligands. Other properties of great importance are dispersibility and water stability, high and not easy quenched fluorescence, biocompatibility, and small and uniform sizes. In this review with ca. 200 references the recent developments in QD synthesis, surface modification, QD-based bioimaging, biotracking of drug molecules, biosensing and photodynamic therapy are summarized.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号