首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14029篇
  免费   1358篇
  国内免费   91篇
工业技术   15478篇
  2024年   9篇
  2023年   193篇
  2022年   120篇
  2021年   479篇
  2020年   410篇
  2019年   396篇
  2018年   526篇
  2017年   544篇
  2016年   633篇
  2015年   554篇
  2014年   768篇
  2013年   1040篇
  2012年   1039篇
  2011年   1262篇
  2010年   951篇
  2009年   893篇
  2008年   782篇
  2007年   590篇
  2006年   551篇
  2005年   483篇
  2004年   457篇
  2003年   400篇
  2002年   299篇
  2001年   270篇
  2000年   216篇
  1999年   222篇
  1998年   309篇
  1997年   189篇
  1996年   179篇
  1995年   106篇
  1994年   116篇
  1993年   70篇
  1992年   58篇
  1991年   48篇
  1990年   41篇
  1989年   45篇
  1988年   23篇
  1987年   19篇
  1986年   21篇
  1985年   13篇
  1984年   19篇
  1983年   17篇
  1982年   8篇
  1981年   11篇
  1980年   8篇
  1979年   10篇
  1977年   11篇
  1976年   9篇
  1973年   7篇
  1970年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Hypoxic–ischemic encephalopathy (HIE) is a devastating neonatal brain condition caused by lack of oxygen and limited blood flow. Environmental enrichment (EE) is a classic paradigm with a complex stimulation of physical, cognitive, and social components. EE can exert neuroplasticity and neuroprotective effects in immature brains. However, the exact mechanism of EE on the chronic condition of HIE remains unclear. HIE was induced by a permanent ligation of the right carotid artery, followed by an 8% O2 hypoxic condition for 1 h. At 6 weeks of age, HIE mice were randomly assigned to either standard cages or EE cages. In the behavioral assessments, EE mice showed significantly improved motor performances in rotarod tests, ladder walking tests, and hanging wire tests, compared with HIE control mice. EE mice also significantly enhanced cognitive performances in Y-maze tests. Particularly, EE mice showed a significant increase in Cav 2.1 (P/Q type) and presynaptic proteins by molecular assessments, and a significant increase of Cav 2.1 in histological assessments of the cerebral cortex and hippocampus. These results indicate that EE can upregulate the expression of the Cav 2.1 channel and presynaptic proteins related to the synaptic vesicle cycle and neurotransmitter release, which may be responsible for motor and cognitive improvements in HIE.  相似文献   
2.
Yb3+/Er3+codoped La10W22O81 (LWO) nanophosphor rods have been successfully synthesized by a facile hydrothermal assisted solid state reaction method, and their upconversion photoluminescence properties were systematically studied. X-ray diffraction patterns revealed that the nanophosphors have an orthorhombic structure with space group Pbcn (60). A microflowers-like morphology with irregular hexagonal nanorods was observed using field emission scanning electron microscopy for the Yb3+(2 mol%)/Er3+(2 mol%):LWO nanophosphor. The shape and size of the nanophosphor and the elements along with their ionic states in the material were confirmed by TEM and XPS studies, respectively. A green upconversion emission was observed in the Er3+: LWO nanophosphors under 980 nm laser excitation. A significant improvement in upconversion emission has been observed in the Er3+: LWO nanophosphors by increasing the Er3+ ion concentration. A decrease in the upconversion emission occurred due to concentration quenching when the doping concentration of Er3+ ions was greater than 2 mol%. An optimized Er3+(2 mol%): LWO nanophosphor exhibited a strong near infrared emission at 1.53 μm by 980 nm excitation. The green upconversion emission of Er3+(2 mol%): LWO was remarkably enhanced by co-doping with Yb3+ ions under 980 nm excitation because of energy transfer from Yb3+ to Er3+. The naked eye observed this upconversion emission when co-doping with 2 mol% Yb3+. In order to obtain the high upconversion green emission, the optimized sensitizer concentration of Yb3+ ions was found to be 2 mol%. The upconversion emission trends were studied as a function of stimulating laser power for an optimized sample. Moreover, the NIR emission intensity has also been enhanced by co-doping with Yb3+ ions due to energy transfer from Yb3+ to Er3+. The energy transfer dynamics were systematically elucidated by energy level scheme. Colorimetric coordinates were determined for Er3+ and Yb3+/Er3+: LWO nanophosphors. The energy transfer mechanism was well explained and substantiated by several fluorescence dynamics of upconversion emission spectra and CIE coordinates. The results demonstrated that the co-doped Yb3+(2 mol%)/Er3+(2 mol%): LWO nanophosphor material is found to be a suitable candidate for the novel upconversion photonic devices.  相似文献   
3.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
4.
Neural Processing Letters - Raman spectroscopy is often used for the composition determination and rapid classification of materials because it can reflect the molecular information of materials....  相似文献   
5.
Here we report a transparent dual-phase ZnO·2.7Al2O3 ceramic. The composite is pore-free and consists of thin nanosheets with a spinel phase and a hexagonal phase, while the two phases match closely in both lattice and refractive index. Such features result in excellent optical transmittance (maximum value >80% in the visible spectrum) at comparable phase volume. This work may provide a new thought for the rational structural design of optical nanocomposites.  相似文献   
6.

LiFe2/3Mn1/3PO4/C composite was prepared by the rheological phase reaction using LiH2PO4, Li2CO3, FePO4, Mn(Ac)2·4H2O and ascorbic acid as starting materials. The crystal structure and morphology of as-synthesized sample were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The analysis of XRD results showed that the obtained sample was single-phase with orthorhombic olivine-type structure (Pnma space group). SEM micrographs revealed that the sample was aggregates, with an irregular morphology. The initial discharge capacity was 166.9, 149.1, 139.6, 112.8, 82.93 mAh g??1 at the rate of 0.1, 0.5, 1, 2, and 10 C, respectively. And when the rate was 0.1, 0.5, 1, 2, and 10 C, the capacity retention was 92.2%, 90%, 92.9%, 97.6%, 91.5% after 50, 100, 200, 200, 500 cycles, respectively.

  相似文献   
7.
8.
The materials typically used for oxygen transport membranes, Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) tend to decompose due to their low thermochemical stability under reducing atmosphere. Fe- and Co-doped SrTiO3 (SrTi1-x-yCoxFeyO3-δ, x + y ≤ 0.35) (STCF) materials showing an oxygen transport comparable to LSCF have great potential for application in ion-transport-devices. In this study, the thermochemical stability of pure perovskite-structured STCF was investigated after annealing in a syngas atmosphere at 600–900 °C. The phase composition of the materials after annealing was characterized by means of X-ray diffraction (XRD). The thermodynamic activities of SrO, FeO, and CoO in the STCF materials were evaluated using Knudsen effusion mass spectrometry (KEMS). Co-doped SrTiO3 (STC) materials were not stable after annealing in the syngas atmosphere above 5 mol% Co-substitution. Ruddlesden-Popper-like phases and SrCO3 were detected after annealing at 600 °C. In contrast, Fe substitution (STF) showed good stability after annealing in syngas upto 35 mol% substitution.  相似文献   
9.
It is believed that the formation of hydration phase, MgO-SiO2-H2O (M-S-H), contributes to good workability and reliable comprehensive properties for magnesia based castables. In order to stimulate the formation of M-S-H in magnesia based castables and understand the minimum introduction of microslica amount, wet milling process was used to promote the dissolution of MgO and SiO2 in this work. The slurry containing different content of microsilica with wet milling technology and the castables with/without wet milling slurry were prepared. The effects of microsilica content on the formation of hydration phases were analyzed by XRD, FT-IR and TG/DSC and the properties of magnesia based castables were evaluated by explosion resistance, CMOR, HMOR and so on. The results showed that the formation of M-S-H was accelerated because of the dissolution of Mg2+ and HSiO3? in wet milling process. Higher amount of M-S-H led to a tight bonding in the early stage, and a denser structure after firing at high temperature due to the limited formation of brucite and in-situ formation of evenly distributed forsterite phase. In addition, much higher HMOR were obtained when less microsilica was added, attributing to the suppressed formation of low-melting-point liquid. Therefore, 2–3 wt% microsilica addition was recommended in this process.  相似文献   
10.
To achieve the stable dispersion of 1D van der Waals crystal Mo6S3I6 in aqueous media, the tri-block copolymer (Poloxamer) is used as dispersant. The head group of Poloxamer, hydrophobic polypropylene oxide parts can be adsorbed to Mo6S3I6 surface by hydrophobic interaction and the tail group with hydrophilic polyethylene oxide exposed to the outside of the Mo6S3I6 is soluble in water and can form sufficient steric hindrance, resulting in stable aqueous dispersion in nm scale. The excellent biocompatibility of aqueous dispersed nm scale 1D Mo6S3I6 was demonstrated by effective proliferation of C2C12 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号