首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1294篇
  免费   112篇
  国内免费   5篇
工业技术   1411篇
  2024年   2篇
  2023年   31篇
  2022年   15篇
  2021年   55篇
  2020年   36篇
  2019年   39篇
  2018年   54篇
  2017年   58篇
  2016年   58篇
  2015年   52篇
  2014年   76篇
  2013年   103篇
  2012年   103篇
  2011年   100篇
  2010年   77篇
  2009年   76篇
  2008年   78篇
  2007年   41篇
  2006年   45篇
  2005年   36篇
  2004年   55篇
  2003年   35篇
  2002年   28篇
  2001年   20篇
  2000年   25篇
  1999年   16篇
  1998年   28篇
  1997年   22篇
  1996年   11篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1981年   1篇
  1974年   1篇
排序方式: 共有1411条查询结果,搜索用时 15 毫秒
1.
In this paper, we present a performance analysis of large-scale multi-input multi-output (MIMO) systems for wireless backhaul networks. We focus on fully connected N nodes in a wireless meshed and multi-hop network topology. We also consider a large number of antennas at both the receiver and transmitter. We investigate the transmission schemes to support fully connected N nodes for half-duplex and full-duplex transmission, analyze the achievable ergodic sum rate among N nodes, and propose a closed-form expression of the achievable ergodic sum rate for each scheme. Furthermore, we present numerical evaluation results and compare the resuts with closed-form expressions.  相似文献   
2.
Human joints have respective ranges of motion and joint forces corresponding to each kind of joint; this necessitates considerations of the characteristics of human joints to fabricate wearable strain sensors conformable to the human body, and capable of precisely monitoring complex motions of the human body. In the present study, the “all textile‐based highly stretchable structure” that is capable of precisely sensing motions (folding and rotation) of the human joints (finger, wrist, elbow, spine, and knee) is fabricated by optimizing patterns (straight, blind, and zigzag) of conductive yarns employed as the conductive part of the strain sensor, and several textile substrates (braided elastic fabric, knit fabric, and woven fabric), having preferable elasticity and conformability employed for the fabrication of strain sensors suitable for human joints. In particular, the technology, enabling the prestraining of textile substrate, is exploited to fabricate a strain sensor that is capable of outputting selective signals corresponding to the folding motion of the spinal joint over a predetermined angle of motion, and the gait pattern of the wearer of the sensor, attached to his or her knee joint doing folding and rotational motions, is analyzed.  相似文献   
3.
Hypoxic–ischemic encephalopathy (HIE) is a devastating neonatal brain condition caused by lack of oxygen and limited blood flow. Environmental enrichment (EE) is a classic paradigm with a complex stimulation of physical, cognitive, and social components. EE can exert neuroplasticity and neuroprotective effects in immature brains. However, the exact mechanism of EE on the chronic condition of HIE remains unclear. HIE was induced by a permanent ligation of the right carotid artery, followed by an 8% O2 hypoxic condition for 1 h. At 6 weeks of age, HIE mice were randomly assigned to either standard cages or EE cages. In the behavioral assessments, EE mice showed significantly improved motor performances in rotarod tests, ladder walking tests, and hanging wire tests, compared with HIE control mice. EE mice also significantly enhanced cognitive performances in Y-maze tests. Particularly, EE mice showed a significant increase in Cav 2.1 (P/Q type) and presynaptic proteins by molecular assessments, and a significant increase of Cav 2.1 in histological assessments of the cerebral cortex and hippocampus. These results indicate that EE can upregulate the expression of the Cav 2.1 channel and presynaptic proteins related to the synaptic vesicle cycle and neurotransmitter release, which may be responsible for motor and cognitive improvements in HIE.  相似文献   
4.
In this paper, we propose a novel formulation extending convolutional neural networks (CNN) to arbitrary two-dimensional manifolds using orthogonal basis functions called Zernike polynomials. In many areas, geometric features play a key role in understanding scientific trends and phenomena, where accurate numerical quantification of geometric features is critical. Recently, CNNs have demonstrated a substantial improvement in extracting and codifying geometric features. However, the progress is mostly centred around computer vision and its applications where an inherent grid-like data representation is naturally present. In contrast, many geometry processing problems deal with curved surfaces and the application of CNNs is not trivial due to the lack of canonical grid-like representation, the absence of globally consistent orientation and the incompatible local discretizations. In this paper, we show that the Zernike polynomials allow rigourous yet practical mathematical generalization of CNNs to arbitrary surfaces. We prove that the convolution of two functions can be represented as a simple dot product between Zernike coefficients and the rotation of a convolution kernel is essentially a set of 2 × 2 rotation matrices applied to the coefficients. The key contribution of this work is in such a computationally efficient but rigorous generalization of the major CNN building blocks.  相似文献   
5.
Journal of Mechanical Science and Technology - The threaded fasteners are typical machine components in tightening of the machine parts and structures. In addition, as threaded fasteners are easy...  相似文献   
6.
In this study, we developed a multiphysics model for simulation of a gas-assisted melt-electrospinning (GAME) process, focusing on jet formation and propagation behavior. By numerically calculating the stresses acting on the jet during a single-nozzle GAME process, the shear viscous stress was identified as the main factor with respect to jet stretch; thus, the relationship between shear viscous stress and jet thickness was investigated. The jet stretch ratio increased sharply when shear viscous stress reached the level at which jet sharpening occurred, leading to stable jet formation. We defined this stress as the critical shear viscous stress to determine stable spinnability. By imposing an electric field distribution calculated for a multi-nozzle array (number of nozzles, tip-to-tip distance, and applied voltage) on the boundary condition of the single-nozzle GAME simulation model, multinozzle GAME was simulated; this enabled proposal of a spinnability diagram for stable spinning.  相似文献   
7.
8.
Baek  Ji Min  Ji  Sang Hoon  Koo  Ja Choon 《Microsystem Technologies》2020,26(11):3389-3394
Microsystem Technologies - Rotating components are one of the most important machine parts used in many industrial applications. Rotating machine commonly used in homes has a washing machine, which...  相似文献   
9.
We studied the origin of different characteristics and properties of a Ti–10V–2Fe–3Al beta (β) titanium alloy with surface height irregularities that occurred during machining. The height differences were observed in two different regions, labeled as “soft region” and “hard region.” The present study showed a higher Fe and a lower Al content in the hard region, which resulted in higher β-phase stability to resist primary alpha (αp) phase precipitation caused by a failure of the solution treatment process. In contrast, the soft region contained a higher volume fraction of αp phase and a lower volume fraction of the matrix, which consisted of a combination of β and secondary alpha (αs) phase. A high number of αs/β interface in the matrix with a predicted hardness of 520 HV generated an improvement of hardness in the hard region. Therefore, the hard and the soft regions had different abilities to resist wear during machining process, resulting in surface height irregularities.  相似文献   
10.
Two donor–acceptor-type alternating copolymers consisting of 2,1,3-benzoselenadiazole and carbazole derivatives with thiophene or selenophene π-bridges were synthesized by Suzuki cross-coupling polymerization, and their optical, electrochemical, and photovoltaic properties were compared. The selenophene π-bridged copolymer (PCz-DSeBSe) exhibited a smaller band-gap (1.82 eV) than the thiophene-bridged polymer (PCz-DTBSe; 1.89 eV). PCz-DSeBSe also showed a deeper highest occupied molecular orbital energy level (−5.36 eV) than PCz-DTBSe (−5.20 eV). Moreover, the PCz-DSeBSe thin film showed higher crystallinity and hole mobility than the PCz-DTBSe thin film. Organic photovoltaic devices were fabricated using the polymers as the donors and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor. The device using PCz-DSeBSe showed a higher open circuit voltage (Voc), short circuit current density (Jsc), and power conversion efficiency (PCE) than that using PCz-DTBSe. The fabricated indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/PCz-DSeBSe:PC71BM/LiF/Al device showed the maximum PCE of 2.88% with a Jsc of 7.87 mA/cm2, an Voc of 0.80 V, and a fill factor of 0.50 under AM 1.5G irradiation (100 mW/cm2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号