首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1079篇
  免费   59篇
  国内免费   2篇
工业技术   1140篇
  2023年   16篇
  2022年   35篇
  2021年   52篇
  2020年   38篇
  2019年   41篇
  2018年   49篇
  2017年   48篇
  2016年   64篇
  2015年   21篇
  2014年   42篇
  2013年   75篇
  2012年   62篇
  2011年   68篇
  2010年   43篇
  2009年   42篇
  2008年   36篇
  2007年   37篇
  2006年   29篇
  2005年   21篇
  2004年   18篇
  2003年   16篇
  2002年   13篇
  2001年   12篇
  2000年   9篇
  1999年   10篇
  1998年   22篇
  1997年   6篇
  1996年   14篇
  1995年   11篇
  1994年   9篇
  1993年   10篇
  1992年   11篇
  1991年   10篇
  1990年   7篇
  1989年   4篇
  1988年   6篇
  1987年   10篇
  1986年   7篇
  1985年   12篇
  1984年   9篇
  1983年   9篇
  1982年   22篇
  1981年   18篇
  1980年   16篇
  1979年   7篇
  1978年   3篇
  1977年   2篇
  1976年   8篇
  1973年   4篇
  1972年   4篇
排序方式: 共有1140条查询结果,搜索用时 15 毫秒
1.
The present research work concentrates on viscous dissipation, Dufour, and heat source on an unsteady magnetohydrodynamics natural convective flow of a viscous, incompressible, and electrically conducting fluid past an exponentially accelerated infinite vertical plate in the existence of a strong magnetic field. The presence of the Hall current induces a secondary flow in the problem. The distinguishing features of viscous dissipation and heat flux produced due to gradient of concentration included in the model along with heat source as they are known to arise in thermal-magnetic polymeric processing. The flow equations are discretized implicitly using the finite difference method and solved using MATLAB fsolve routine. Numerical values of the primary and secondary velocities, temperature, concentration, skin friction, Nusselt number, and Sherwood number are illustrated and presented via graphs and tables for various pertinent parametric values. The Dufour effect was observed to strengthen the velocity and temperature profile in the flow domain. In contrast, due to the impact of viscous dissipation, the local Nusselt number reduces. The study also reveals that the inclusion of the chemical reaction term augments the mass transfer rate and diminishes the heat transfer rate at the plate.  相似文献   
2.
3.
Metallurgical and Materials Transactions A - Further development of high chromium cast irons (HCCI) is based on tailoring the microstructure, necessitating an accurate control over the phase...  相似文献   
4.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
5.
The present article discusses the experimental results on cooling characteristics of a stationary hot steel plate by spray impingement. The experimental setup consisted of an electrically heated flat stationary steel plate of dimension 120 mm × 120 mm × 4 mm, spray setup, water supply, and air supply unit. The effects of various controlling parameters such as air-water pressures, water flow rate, nozzle tip to target distance and impingement density were determined and analyzed. The cooling rates were computed from the time-dependent temperature history and used to analyze the parametric effects. The results obtained in the study confirmed the higher efficiency of the spray cooling system and the cooling strategy was found advantageous over the conventional cooling methods available in the open literature.  相似文献   
6.
Multi-carrier waveforms have several advantages over single-carrier waveforms for radar communication. Employing multi-carrier complementary phase-coded (MCPC) waveforms in radar applications has recently attracted significant attention. MCPC radar signals take advantage of orthogonal frequency division multiplexing properties, and several authors have explored the use of MCPC signals and the difficulties associated with their implementation. The sidelobe level and peak-to-mean-envelope-power ratio (PMEPR) are the key issues that must be addressed to improve the performance of radar signals. We propose a scheme that applies pattern-based scaling and geometric progression methods to enhance sidelobe and PMEPR levels in MCPC radar signals. Numerical results demonstrate the improvement of sidelobe and PMEPR levels in the proposed scheme. Additionally, autocorrelations are obtained and analyzed by applying the proposed scheme in extensive simulation experiments.  相似文献   
7.
8.
We have demonstrated earlier that maximum H2 generated @ 1.167 l/h/m2 over Cu0.02Ti0.98O2-δ photocatalyst with apparent quantum efficiency, AQE of 7.5% and solar fuel efficiency, SFE of 3.9% under sunlight. With an aim to scale-up the solar photocatalytic hydrogen process to pilot plant, optimization studies at lab scale as well as in upscaled photoreactors were performed over Cu0.02Ti0.98O2-δ, photocatalyst under UV/visible and sunlight. Cu0.02Ti0.98O2-δ was synthesized by facile sol-gel route and characterized by relevant techniques. Several operational parameters were investigated in order to finalize the conditions which are most favourable for photocatalytic hydrogen yield. Factors such as photocatalyst loadings, v/v concentration of sacrificial reagent, replacement of methanol by industrial waste glycerol, role of different configuration of light source with reactor, effect of stirring during the photocatalytic reaction, effect of fluctuations of solar flux at hourly basis, illumination area on hydrogen yield were studied. Contribution of each factor in determining the hydrogen yield was quantified. Relative standard deviation in hydrogen yield as a function of each factor was estimated. Our findings suggest that in addition to catalyst loadings and sacrificial reagent, improved dispersion of photocatalyst obtained by stirring the reaction mixture in horizontal geometry resulted in enhanced H2 yield. Hydrogen yield obtained at lab scale can be appropriately extrapolated with respect to illumination area instead of weight of photocatalyst. A relative standard deviation (RSD) of ± 3.82% and ± 4.53% in H2 yield was calculated for sunny and cloudy days in time zone of 10.30–16.30 h IST. Deviation of H2 yield was more on cloudy days and beyond 16:30 h. These studies have provided a daily window of 11:00–15:00 h to be utilized throughout the year for a commercial scaled up process, prohibiting the illumination during less productive hours of the day for shaping the improved economics of solar hydrogen generation. Our results obtained at lab scale would be useful to perform sunlight driven scaled –up photocatalytic process using low cost visible light efficient photocatalyst, Cu0.02Ti0.98O2-δ.  相似文献   
9.
10.
Even if a ceramic's homogenized properties (such as anisotropically evolving stiffness) truly can be predicted from complete knowledge of sub-continuum morphology (e.g., locations, sizes, shapes, orientations, and roughness of trillions of crystals, dislocations, impurities, pores, inclusions, and/or cracks), the necessary calculations are untenably hypervariate. Non-productive (almost derailing) debates over shortcomings of various first-principles ceramics theories are avoided in this work by discussing numerical coarsening in the context of a pedagogically appealing buckling foundation model that requires only sophomore-level understanding of springs, buckling hinges, dashpots, etc. Bypassing pre-requisites in constitutive modeling, this work aims to help students to understand the difference between damage and plasticity while also gaining experience in Monte-Carlo numerical optimization via scale-bridging that reduces memory and processor burden by orders of magnitude while accurately preserving aleatory (finite-sampling) perturbations that are crucial to accurately predict bifurcations, such as ceramic fragmentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号