首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The consequences of Soret in addition to Dufour of natural convection heat and mass transfer for the unsteady three-dimensional boundary layer flow through a perpendicular condition of the existence of viscous dissipation, invariable suction, Hall as well as ion slip consequences into relation. The prevailing partial differential equation is dissolved digitally utilizing the implicit Crank–Nicolson finite difference method. The velocity, temperature, as well as concentration dispensations, is addressed computationally and demonstrated by the graphs. Numerical values of the Nusselt number, skin friction as well as Sherwoods numbers nearby the plate are discussed for a choice of values of substantial parameters and are displayed in a tabular manner. It is noticed that the temperature of the fluid diminishes with higher Prandtl numbers. The resulting velocity diminishes with the growing Hartmann number. Rotation, Soret, and Dufour parameters strengthen the velocity and momentum boundary layer thickness. The velocity intensifies through growing Hall and ion-slip parameters and the revoke trend is acquired with enhancement in suction parameter.  相似文献   

2.
Thermo-diffusion (Soret effect) and diffusion-thermo (Dufour effect) effects on combined heat and mass transfer of a steady hydromagnetic convective and slip flow due to a rotating disk in the presence of viscous dissipation and Ohmic heating is investigated. The partial differential equations governing the problem under consideration have been transformed by a similarity transformation into a system of ordinary differential equations which are solved numerically by applying the shooting method. For fluids of medium molecular weight (H2, air), profiles of the dimensionless velocity, temperature and concentration distributions are shown graphically for various values of slip parameter γ, magnetic field parameter M, Eckert Ec, Schmidt Sc, Dufour Du and Soret Sr numbers. Finally, numerical values of physical quantities, such as the local skin friction coefficient, the local Nusselt number and the local Sherwood number are presented in tabular form.  相似文献   

3.
This work studies the Soret and Dufour effects on the boundary layer flow due to natural convection heat and mass transfer over a downward-pointing vertical cone in a porous medium saturated with Newtonian fluids with constant wall temperature and concentration. A similarity analysis is performed, and the obtained similar equations are solved by cubic spline collocation method. The effects of the Dufour parameter, Soret parameter, Lewis number, and buoyancy ratio on the heat and mass transfer characteristics have been studied. The local Nusselt number tends to decrease as the Dufour parameter is increased. The effect of the Dufour parameter on the local Nusselt number becomes more significant as the Lewis number is increased. Moreover, an increase in the Soret number leads to a decrease in the local Sherwood number and an increase in the local Nusselt number.  相似文献   

4.
The major motive of the current investigation is to analyze an exact solution for an unsteady magnetohydrodynamics natural convective flow of a viscous incompressible electrically conducting non-gray optically thick fluid past an impulsively started infinite vertical plate with ramped wall temperature and concentration in the presence of radiation, diffusion-thermo effect, and induced magnetic field. Laplace transform method is used to acquire the specific solutions of the dimensionless domain equations. The impact of various physical parameters on fluid velocities, temperature, concentration, and moreover on the rate of heat transfer, mass transfer, and skin friction at the wall are shown graphically. It is also found that the Dufour effect causes an increase in fluid velocity as well as temperature. The ramped condition influences the rise in Nusselt number.  相似文献   

5.
This paper deals with an analysis of the Soret and Dufour effects on the boundary layer flow due to free convection heat and mass transfer over a vertical cylinder in a porous medium saturated with Newtonian fluids with constant wall temperature and concentration. A suitable coordination transformation is used to derive the similar governing boundary-layer equations, and the cubic spline collocation method is then employed to solve the similar governing boundary-layer equations. The variation of the Nusselt number and the Sherwood number with the Dufour parameter and the Soret parameter for various Lewis numbers and buoyancy ratios have been presented in this work. Results show that an increase in the Soret number leads to a decrease in the local Sherwood number and an increase in the local Nusselt number. The local Nusselt number tends to decrease as the Dufour parameter is increased. Moreover, an increase in the Lewis number enhances the effect of the Dufour parameter on the local Nusselt number.  相似文献   

6.
The free convection boundary layer flow over an arbitrarily inclined heated plate in a porous medium with Soret and Dufour effects is studied by transforming the governing equations into a universal form. The generalized equations can be used to derive the similarity solutions for limiting cases of horizontal and vertical plates and to calculate the heat and mass transfer characteristics between these two limiting cases. The heat and mass transfer characteristics are presented as functions of Soret parameter, Dufour parameter, inclination variable, Lewis number, and buoyancy ratio. Results show that an increase in the Dufour parameter tends to decrease the local heat transfer rate, and an increase in the Soret parameter tends to decrease the local mass transfer rate. As the inclination variable increases, the local Nusselt number and the local Sherwood number decrease from their respective values for horizontal plates, reach their respective minima, and then increase to their respective values for vertical plates. The minima are where the tangential and normal components of buoyancy force are comparable.  相似文献   

7.
A theoretical analysis is made for steady fully developed free convection and mass transfer flow near an infinite vertical moving porous plate by taking into consideration the first‐order chemical reaction and Dufour effects. The mathematical model responsible for the present physical situation is based on the nonlinear density variation with temperature as well as nonlinear density variation with concentration. Exact solutions are derived for heat mass and momentum equations under relevant boundary conditions. The dimensionless velocity, temperature, and concentration are presented in terms of exponential functions. The impact of controlling parameters such as Dufour number (diffusion thermo effect), chemical reaction parameter, Prandlt number, Schmidt number, on velocity, temperature, Nusselt number, and skin friction are discussed with the aid of line graphs, contours, and tables. The analysis of the result shows that Nusselt number, skin friction, and velocity increases with increase in Dufour number. Furthermore, velocity and skin friction are higher in case of nonlinear convection in comparison to linear convection.  相似文献   

8.
The effect of viscous dissipation and rarefaction on rectangular microchannel convective heat transfer rates, as given by the Nusselt number, is numerically evaluated subject to constant wall heat flux (H2) and constant wall temperature (T) thermal boundary conditions. Numerical results are obtained using a continuum based, three-dimensional, compressible, unsteady computational fluid dynamics algorithm with slip velocity and temperature jump boundary conditions applied to the momentum and energy equations, respectively. For the limiting case of parallel plate channels, analytic solutions for the thermally and hydrodynamically fully developed momentum and energy equations are derived, subject to both first- and second-order slip velocity and temperature jump boundary conditions, from which analytic Nusselt number solutions are then obtained. Excellent agreement between the analytical and numerical results verifies the accuracy of the numerical algorithm, which is then employed to obtain three-dimensional rectangular channel and thermally/hydrodynamically developing Nusselt numbers. Nusselt number data are presented as functions of Knudsen number, Brinkman number, Peclet number, momentum and thermal accommodation coefficients, and aspect ratio. Rarefaction and viscous dissipation effects are shown to significantly affect the convective heat transfer rate in the slip flow regime.  相似文献   

9.
In this study, we numerically explore the impact of varying viscosity and thermal conductivity on a magnetohydrodynamic flow problem over a moving nonisothermal vertical plate with thermophoretic effect and viscous dissipation. The boundary conditions and flow-regulating equations are converted into ordinary differential equations with the aid of similarity substitution. The MATLAB bvp4c solver is used to evaluate the numerical solution of the problem and it is validated by executing the numerical solution with previously published studies. The impacts of several factors, including the magnetic parameter, Eckert number, heat source parameter, thermal conductivity parameter, stratification parameter, Soret, Dufour, Prandtl number, and Schmidt number are calculated and shown graphically. Also, the skin friction coefficient, Nusselt number, and Sherwood number are calculated. Fluid velocity, temperature, and concentration significantly drop as the thermophoretic parameter and thermal stratification parameter increases. As thermal conductivity rises, it is seen that the velocity of the fluid and temperature inside the boundary layer rise as well. Also, the Soret effect drops temperature and concentration profile. The applications of this type of problem are found in the processes of nuclear reactors, corrosion of heat exchangers, lubrication theory, and so forth.  相似文献   

10.
This article presents the two-dimensional mixed convective MHD unsteady stagnation-point flow with heat and mass transfer on chemically reactive Casson fluid towards a vertical stretching surface. This fluid flow model is influenced by the induced magnetic field, thermal radiation, viscous dissipation, heat absorption, and Soret effect with convective boundary conditions and solved numerically by shooting technique. The calculations are accomplished by MATLAB bvp4c. The velocity, induced magnetic field, temperature, and concentration distributions are displayed by graphs for pertinent influential parameters. The numerical results for skin friction coefficient, rate of heat, and mass transfer are analyzed via tables for different influential parameters for both assisting and opposing flows. The results reveal that the enhancement of the unsteadiness parameter diminishes velocity and induced magnetic field but it rises temperature and concentration distributions. Moreover, higher values of magnetic Prandtl number enhance Nusselt number and skin friction coefficient, but it has the opposite impact on Sherwood number. We observe that the amplitude is higher in assisting flow compared to opposing flow for skin friction coefficient and Nusselt number whereas opposite trends are noticed for Sherwood number. Our model will be applicable to various magnetohydrodynamic devices and medical sciences.  相似文献   

11.
Here, a study of steady, magnetohydrodynamic flow of incompressible, cold fluid around a moving plate with a non-Darcian porous medium in existence of heat source and nth-order chemical reaction incorporating Soret and Dufour effects is considered. MATLAB bvp4c technique is used to solve the prevailing equations. Variations in velocity, temperature and concentration are analysed. It is observed that the applicable parameters such as non-Darcy, Soret, Dufour, chemical reaction play a significant role in controlling the flow. Chemical reaction parameter reduces skin friction, heat transfer, and mass transfer while Eckert number enhances the mass transfer and skin friction.  相似文献   

12.
This work studies the Soret and Dufour effects on the natural convection heat and mass transfer near a vertical truncated cone with variable wall temperature and concentration in a fluid-saturated porous medium. A coordinate transform is used to obtain the nonsimilar governing equations, and the transformed boundary layer equations are solved by the cubic spline collocation method. Results for local Nusselt number and the local Sherwood number are presented as functions of Soret parameters, Dufour parameters, surface temperature and concentration exponents, buoyancy ratios, and Lewis numbers. Results show that increasing the Dufour parameter tends to decrease the local Nusselt number, while it tends to increase the local Sherwood number. An increase in the Soret number leads to an increase in the Nusselt number and a decrease in the Sherwood number from a vertical truncated cone in a fluid-saturated porous medium. The local Nusselt number and the local Sherwood number of the truncated cones with higher surface temperature and concentration exponents are higher than those with lower exponents.  相似文献   

13.
This work studies the heat and mass transfer characteristics of natural convection near a vertical wavy cone in a fluid saturated porous medium with Soret and Dufour effects. The surface of the wavy cone is kept at constant temperature and concentration. The governing equations are transformed into a set of coupled differential equations, and the obtained boundary layer equations are solved by the cubic spline collocation method. The heat and mass transfer characteristics are presented as functions of Soret parameter, Dufour parameter, half angle of the cone, Lewis number, buoyancy ratio, and dimensionless amplitude. Results show that an increase in the Dufour parameter tends to decrease the local Nusselt number, and an increase in the Soret parameter tends to decrease the local Sherwood number. Moreover, a greater half angle of the cone leads to a greater fluctuation of the local Nusselt and Sherwood numbers with the streamwise coordinates.  相似文献   

14.
In this article, influences of viscous dissipation and thermal radiation on MHD flow of two immiscible fluids in a vertical channel filled with porous materials have been studied theoretically. The equations governing the problem are transformed to a system of ODE and are solved by homotopy analysis method (HAM). The effects of physical parameters on flow and heat transfer characteristics have been discussed with the help of graphs. It is found that viscous dissipation parameter, heat source parameter, thermal parameter lead to enhance velocity as well as temperature field. Also, increasing Brinkmann number and heat source parameter lead to suppress Coefficient of skin friction at the left wall but the opposite is true at the other wall. However, these parameters give reverse trend on Nusselt number distribution. Further, increasing thermal conductivity ratio and fluids height ratio leads to increase heat transfer coefficient significantly at the left wall. In addition, we have compared present HAM solution with analytical solution of the problem (ie, absence of radiation parameter and Brinkmann number).  相似文献   

15.
The current reconnaissance emphasis on spanwise cosinusoidally fluctuating temperature along with time deepened as well as radiation absorption on unsteady magneto-hydrodynamics free convective heat and mass transfer boundary layer flow with viscous dissipation, constant suction normal to an infinite hot vertical porous plate in the existence of chemical reaction by means of heat generation. The analytical solution of nonlinear PDE's governing the flow has been accomplished by employing a second-order multiple regular perturbation method within the stipulated boundary conditions. Velocity, temperature, concentration as well as Sherwood have been exemplified graphically; along with Skin friction, and Nusselt numbers are ascertained in tabular form. Eventually, it was found that velocity, temperature, and Skin friction accelerated with the accumulative values of Eckert number and radiation absorption, but conflicting results emerged in the case of Prandtl number. Contemporaneously Sherwood's number depreciated with the magnification of the chemical reaction parameter as well as the Schmidt number.  相似文献   

16.
In this paper, we analyze the effects of Hall current, radiation absorption and diffusion thermo on unsteady magnetohydromagnetic free convection flow of a viscous incompressible electrically conducting and chemically reacting second-grade fluid past an inclined porous plates in the presence of an aligned magnetic field, thermal radiation, and chemical reaction. An exact analytical solution of the governing equations for fluid velocity, fluid temperature, and species concentration subject to appropriate initial and boundary conditions is obtained using the perturbation technique. Expressions for shear stress, rate of heat transfer, and rate of mass transfer at the plate are derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically, whereas those of shear stress and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. In addition, the skin friction on the boundary, the heat flux expressed in terms of the Nusselt number, and the rate of mass transfer described in the Sherwood number are all derived, and their behavior is studied computationally. It can be deduced that an increase in radiation absorption and hall current parameters over the fluid region increases the velocity produced. The resulting velocity continually increases to a very high level, with contributions coming from thermal and solutal buoyancy forces. Skin friction may decrease by manipulating the rotation parameter, but the Hall effect can worsen it. When the parameter for the chemical reaction increases, there is a concomitant rise in the mass transfer rate.  相似文献   

17.
ABSTRACT

Analytical expressions for the velocity and temperature profiles in a fully-developed laminar Poiseuille flow through a concentric annular duct of a Bingham fluid with constant wall heat flux at the inner and outer wall, in the presence of viscous dissipation are deduced and presented. It is found that the proportion of the heat generated by viscous dissipation near the outer wall increases with an increase of the dimensionless flow parameter, and a decrease of the duct radius ratio. The Nusselt numbers are first calculated based on a single bulk temperature for the entire duct cross section. The possibility of performing calculations of the relevant parameters discussed in this work is available via the Supplementary Material as an Excel file. Also in this work a new approach is employed, where two different bulk temperatures are used, one for each side of the radial location in the temperature profile whose derivative is zero. With this new approach the Nusselt number behavior is free of either unphysical discontinuities or negative values. As a consequence, the Nusselt number values better reflect the actual heat transfer coefficient at the walls and are more comparable with the heat transfer inside ducts when the temperature profile is symmetric.  相似文献   

18.
In the present study, we investigated the steady, two-dimensional mixed convective stagnation point flow of an electrically conducting micropolar fluid due to stretching of a variable thicked surface in the attendance of viscous dissipation. The flow is incompressible and laminar. The combined heat and mass transfer features are investigated. Convective and diffusion conditions are considered. The nonlinear thermal radiation, thermo-diffusion, and diffusion thermal effects are considered. The governing partial differential equations are converted to ordinary differential equations by using the appropriate similarity transformations. The obtained nonlinear and coupled ordinary differential equations are elucidated numerically using the fourth-order Runge–Kutta based shooting technique. The influence of various nondimensional parameters on the flow field like velocity, microrotation, temperature, and concentration is examined with the assistance of graphs. Results indicate that the Dufour number has a proclivity to increase the distributions of concentration and temperature correspondingly. Also, fluid temperature and concentration enhance for increasing values of the wall thickness parameter.  相似文献   

19.
This study deals with an analysis of the time-dependent dynamics of micropolar fluid flow subject to Lorentz force, diffusion thermal, and viscous dissipation effect past a uniformly moving semi-infinite porous plate in the presence of chemical reaction. Expressions of velocity, microrotation, concentration, temperature, skin friction, Sherwood number, and Nusselt number are established and the effect of several parameters on them are represented graphically. Equations governing the flow and heat transfer are solved by adopting the regular perturbation technique. It is noticed that temperature distribution as well as the coefficient of friction is enhanced due to the diffusion thermo effect. It is observed that the microrotation increases with increasing magnetic parameters. Furthermore, the study confirms a drop in fluid concentration under the composition of species.  相似文献   

20.
The influence of viscous dissipation on thermally fully-developed, electro-osmotically generated flow has been analyzed for a parallel plate microchannel and circular microtube under imposed constant wall heat flux and constant wall temperature boundary conditions. Such a flow is established not by an imposed pressure gradient, but by a voltage potential gradient along the length of the tube. The result is a combination of unique electro-osmotic velocity profiles and volumetric heating in the fluid due to the imposed voltage gradient. For large ratio of the microtube radius (or microchannel half-width) to Debye length, the wall-normal fluid velocity gradients can be extremely high, which has the potential for significant viscous heating. The solution for the fully-developed, dimensionless temperature profile and corresponding Nusselt number have been determined for both geometries and for both thermal boundary conditions. It is shown that three dimensionless parameters govern the thermal transport: the relative duct radius (ratio of the duct radius or plate gap half-width to Debye length), the dimensionless volumetric source (ratio of Joule heating to wall heat flux), and a dimensionless parameter that relates the magnitude of the viscous heating to the Joule heating. Surprisingly, it is shown that the influence of viscous dissipation is only important at low values of the relative duct radius. For magnitudes of the dimensionless parameters which characterize most practical electro-osmotic flow applications, the effect of viscous dissipation is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号